{"title":"用于结构健康监测的能量感知多功能无线传感器网络配置","authors":"Xiaogang Hao, K. Yuen, Sin‐Chi Kuok","doi":"10.1002/stc.3083","DOIUrl":null,"url":null,"abstract":"In this paper, a sensor network configuration optimization approach is proposed to design informative and energy‐efficient wireless sensor networks. In particular, the design of cluster‐based versatile wireless sensor networks for structural health monitoring is considered. In contrast to conventional cluster‐based wireless sensor placement methods, a clustering optimization algorithm is proposed to determine the optimal locations of the cluster heads and the base station to enhance the energy efficiency of the network. The proposed approach determines the optimal wireless sensor network configuration that achieves the required estimation accuracy with minimal energy cost. Moreover, the proposed approach utilizes a holistic measure to assess the overall performance of multitype sensing devices. Furthermore, by implementing a genetic algorithm (GA) strategy, the proposed approach is computationally efficient and widely applicable for large‐scale civil engineering infrastructures. To demonstrate the performance of the proposed approach, the wireless sensor network configuration design of a bridge model and a space truss model is presented.","PeriodicalId":22049,"journal":{"name":"Structural Control and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Energy‐aware versatile wireless sensor network configuration for structural health monitoring\",\"authors\":\"Xiaogang Hao, K. Yuen, Sin‐Chi Kuok\",\"doi\":\"10.1002/stc.3083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a sensor network configuration optimization approach is proposed to design informative and energy‐efficient wireless sensor networks. In particular, the design of cluster‐based versatile wireless sensor networks for structural health monitoring is considered. In contrast to conventional cluster‐based wireless sensor placement methods, a clustering optimization algorithm is proposed to determine the optimal locations of the cluster heads and the base station to enhance the energy efficiency of the network. The proposed approach determines the optimal wireless sensor network configuration that achieves the required estimation accuracy with minimal energy cost. Moreover, the proposed approach utilizes a holistic measure to assess the overall performance of multitype sensing devices. Furthermore, by implementing a genetic algorithm (GA) strategy, the proposed approach is computationally efficient and widely applicable for large‐scale civil engineering infrastructures. To demonstrate the performance of the proposed approach, the wireless sensor network configuration design of a bridge model and a space truss model is presented.\",\"PeriodicalId\":22049,\"journal\":{\"name\":\"Structural Control and Health Monitoring\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control and Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/stc.3083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control and Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/stc.3083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy‐aware versatile wireless sensor network configuration for structural health monitoring
In this paper, a sensor network configuration optimization approach is proposed to design informative and energy‐efficient wireless sensor networks. In particular, the design of cluster‐based versatile wireless sensor networks for structural health monitoring is considered. In contrast to conventional cluster‐based wireless sensor placement methods, a clustering optimization algorithm is proposed to determine the optimal locations of the cluster heads and the base station to enhance the energy efficiency of the network. The proposed approach determines the optimal wireless sensor network configuration that achieves the required estimation accuracy with minimal energy cost. Moreover, the proposed approach utilizes a holistic measure to assess the overall performance of multitype sensing devices. Furthermore, by implementing a genetic algorithm (GA) strategy, the proposed approach is computationally efficient and widely applicable for large‐scale civil engineering infrastructures. To demonstrate the performance of the proposed approach, the wireless sensor network configuration design of a bridge model and a space truss model is presented.