机器学习方法在公交到达时间预测问题中的性能比较

A. Agafonov, A. Yumaganov
{"title":"机器学习方法在公交到达时间预测问题中的性能比较","authors":"A. Agafonov, A. Yumaganov","doi":"10.18287/1613-0073-2019-2416-57-62","DOIUrl":null,"url":null,"abstract":"The problem of predicting the movement of public transport is one of the most popular problems in the field of transport planning due to its practical significance. Various parametric and non-parametric models are used to solve this problem. In this paper, heterogeneous information affecting the prediction value is used to predict the arrival time of public transport, and a comparison of the main machine learning algorithms for the public transport arrival time forecasting is given: neural networks, support vector regression. An experimental analysis of the algorithms was carried out on real traffic information about bus routes in Samara, Russia.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Performance comparison of machine learning methods in the bus arrival time prediction problem\",\"authors\":\"A. Agafonov, A. Yumaganov\",\"doi\":\"10.18287/1613-0073-2019-2416-57-62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of predicting the movement of public transport is one of the most popular problems in the field of transport planning due to its practical significance. Various parametric and non-parametric models are used to solve this problem. In this paper, heterogeneous information affecting the prediction value is used to predict the arrival time of public transport, and a comparison of the main machine learning algorithms for the public transport arrival time forecasting is given: neural networks, support vector regression. An experimental analysis of the algorithms was carried out on real traffic information about bus routes in Samara, Russia.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2416-57-62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2416-57-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

公共交通运动预测问题是交通规划领域的热点问题之一,具有重要的现实意义。各种参数和非参数模型被用来解决这个问题。本文将影响预测值的异构信息用于公共交通到达时间的预测,并对公共交通到达时间预测的主要机器学习算法:神经网络、支持向量回归进行了比较。在俄罗斯萨马拉市的公交路线的真实交通信息中对算法进行了实验分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance comparison of machine learning methods in the bus arrival time prediction problem
The problem of predicting the movement of public transport is one of the most popular problems in the field of transport planning due to its practical significance. Various parametric and non-parametric models are used to solve this problem. In this paper, heterogeneous information affecting the prediction value is used to predict the arrival time of public transport, and a comparison of the main machine learning algorithms for the public transport arrival time forecasting is given: neural networks, support vector regression. An experimental analysis of the algorithms was carried out on real traffic information about bus routes in Samara, Russia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1