预测车辆行驶时间的深度神经网络

Arthur Cruz de Araujo, A. Etemad
{"title":"预测车辆行驶时间的深度神经网络","authors":"Arthur Cruz de Araujo, A. Etemad","doi":"10.1109/SENSORS43011.2019.8956878","DOIUrl":null,"url":null,"abstract":"This paper focuses on prediction if vehicle travel time. An established open dataset of taxi trips in New York City is used. We first perform statistical analysis on the data in order to determine the informative features that can be used for the problem at hand. Successive to detailed analysis of the data and features, we develop a deep neural network for travel time prediction. We show that our model performs with high accuracy, and outperforms a number of baseline techniques.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"5 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deep Neural Networks for Predicting Vehicle Travel Times\",\"authors\":\"Arthur Cruz de Araujo, A. Etemad\",\"doi\":\"10.1109/SENSORS43011.2019.8956878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on prediction if vehicle travel time. An established open dataset of taxi trips in New York City is used. We first perform statistical analysis on the data in order to determine the informative features that can be used for the problem at hand. Successive to detailed analysis of the data and features, we develop a deep neural network for travel time prediction. We show that our model performs with high accuracy, and outperforms a number of baseline techniques.\",\"PeriodicalId\":6710,\"journal\":{\"name\":\"2019 IEEE SENSORS\",\"volume\":\"5 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS43011.2019.8956878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文主要研究车辆行驶时间的预测问题。本文使用了纽约市出租车旅行的开放数据集。我们首先对数据进行统计分析,以确定可用于当前问题的信息特征。在详细分析数据和特征的基础上,提出了一种用于行程时间预测的深度神经网络。我们表明,我们的模型具有很高的准确性,并且优于许多基线技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Neural Networks for Predicting Vehicle Travel Times
This paper focuses on prediction if vehicle travel time. An established open dataset of taxi trips in New York City is used. We first perform statistical analysis on the data in order to determine the informative features that can be used for the problem at hand. Successive to detailed analysis of the data and features, we develop a deep neural network for travel time prediction. We show that our model performs with high accuracy, and outperforms a number of baseline techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Legionella Species by Photogate-Type Optical Sensor A Nano-Watt Dual-Mode Address Detector for a Wi-Fi Enabled RF Wake-up Receiver Optical Feedback Interferometry imaging sensor for micrometric flow-patterns using continuous scanning DNN-based Outdoor NLOS Human Detection Using IEEE 802.11ac WLAN Signal Disconnect Switch Position Sensor Based on FBG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1