{"title":"生物信息学中大分子的三维可视化","authors":"Михаил Юрьевич Волошин","doi":"10.23951/2312-7899-2021-4-12-35","DOIUrl":null,"url":null,"abstract":"Биоинформатики часто описывают собственную научную деятельность как практику работы с большими объемами данных с помощью вычислительных устройств. Существенной частью этого самоопределения является создание способов визуального представления результатов такой работы, некоторые из которых направлены на построение удобных репрезентаций данных и демонстрацию закономерностей, присутствующих в них (графики, диаграммы, графы). Другие являются способами визуализации объектов, непосредственно не доступных человеческому восприятию (микрофотография, рентгенограмма). И создание визуализаций, и особенно создание новых компьютерных методов визуализации рассматриваются в биоинформатике как значимые научные достижения. \nРепрезентации трехмерной структуры белковых молекул занимают особое место в деятельности биоинформатиков. 3D-визуализация макромолекулы, с одной стороны, является, подобно графику, представлением результатов компьютерной обработки массивов данных, полученных материальными методами, – данных о взаимном расположении элементов молекулы. С другой стороны, подобно микрофотографии, такие 3D-структуры должны служить точными отображениями конкретных научных объектов. Это приводит к параллельному существованию двух противоречивых эпистемических режимов: творческий произвол в создании удобных, коммуникативно успешных моделей сочетается с верностью объекту «как он есть на самом деле». \nПарадокс усиливается тем, что научное исследование репрезентируемых объектов (определение свойств структуры, ее функций, сравнение с другими структурами) посредством компьютеров само по себе вообще не требует визуализации. Ее очевидно высокая ценность для биоинформатики не выглядит оправданной, если иметь в виду значительную искусственность и художественность получаемых изображений. \nОднако статус этих изображений становится яснее при соотнесении с более ранними представлениями о роли визуального в научном поиске. Высокая оценка визуализации как итогового результата научного исследования была характерна для науки эпохи Возрождения. Художественная репрезентация идеальных существенных свойств вместо строгого соответствия конкретному биологическому объекту – эпистемическая добродетель, типичная для натуралистов XVII–XVIII веков. И то и другое предполагало тесное сотрудничество ученого с художником; и стандарты визуализации макромолекул в биоинформатике вырастают из аналогичного сотрудничества (рисунки Гейса). Стремление же к максимальной точности и детализации наследует регулятиву «механической объективности» (как определяли это Л. Дастон и П. Галисон), для которого важным оказывается и устранение субъекта из процесса производства изображения (в биоинформатике – передача этих функций компьютерным программам). Таким образом, 3D-визуализация белковых структур несет на себе следы исторически разных ценностных ориентиров, но научная практика XX–XXI веков, дополненная компьютерными технологиями, позволяет им сочетаться в конкретных дисциплинарных единствах.\n Bioinformatics scientists often describe their own scientific activities as the practice of working with large amounts of data using computing devices. An essential part of their self-identification is also the development of ways to visually represent the results of this work. Some of these methods are aimed at building convenient representations of data and demonstrating patterns present in them (graphics, diagrams, graphs). Others are ways of visualizing objects that are not directly accessible to human perception (microphotography, X-ray). Both the construction of visualizations and (especially) the creation of new computer visualization methods are considered in bioinformatics as significant scientific achievements. Representations of the three-dimensional structure of protein molecules play a special role in the inquiries of bioinformatics scientists. 3D-visualization of a macromolecule, on the one hand, is, like a graph, a representation of the results of computer processing of data arrays obtained by material methods – spatiotemporal coordinates of structural elements of the molecule. On the other hand, like microphotography, these 3D structures should serve as accurate representations of specific scientific objects. This leads to the parallel existence of two contradictory epistemic regimes: creative arbitrariness in making convenient, communicatively successful models, is combined with commitment to the object “as it really is”. The paradox is reinforced by the fact that the scientific study of objects in question (determining the properties of the structure, its functions, comparison with other structures) by means of computers does not require visualization at all. Its obviously high value for bioinformatics does not look justified if we take into account the prominent artificiality and artistry of the resulting images. However, the status of these images becomes clearer if we relate them to earlier notions of the role of the visual in scientific discovery. The highest estimation of visualization as the final result of scientific research was characteristic of Renaissance science. The artistic representation of ideal essential properties, instead of a strict correspondence to a particular biological object, is an epistemic virtue typical of the naturalists of the 17th and 18th centuries. Both suggested a close collaboration between the scientist and the artist; and standards for visualizing macromolecules in bioinformatics grow out of a similar collaboration (Geis’ drawings). The desire for maximum accuracy and detail inherits the regulation of “mechanical objectivity” (as Daston and Galison put it into words), for which it is also important to eliminate humans from the image production process (in bioinformatics, to transfer these functions to computer programs). Thus, 3D-visualization of protein structures bears traces of historically different value orientations, but the scientific practice of the 20th and 21st centuries, supplemented by computer technologies, allows them to be intertwined in particular disciplinary units.","PeriodicalId":37342,"journal":{"name":"Praxema","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-VISUALIZATION OF MACROMOLECULES IN BIOINFORMATICS:\",\"authors\":\"Михаил Юрьевич Волошин\",\"doi\":\"10.23951/2312-7899-2021-4-12-35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Биоинформатики часто описывают собственную научную деятельность как практику работы с большими объемами данных с помощью вычислительных устройств. Существенной частью этого самоопределения является создание способов визуального представления результатов такой работы, некоторые из которых направлены на построение удобных репрезентаций данных и демонстрацию закономерностей, присутствующих в них (графики, диаграммы, графы). Другие являются способами визуализации объектов, непосредственно не доступных человеческому восприятию (микрофотография, рентгенограмма). И создание визуализаций, и особенно создание новых компьютерных методов визуализации рассматриваются в биоинформатике как значимые научные достижения. \\nРепрезентации трехмерной структуры белковых молекул занимают особое место в деятельности биоинформатиков. 3D-визуализация макромолекулы, с одной стороны, является, подобно графику, представлением результатов компьютерной обработки массивов данных, полученных материальными методами, – данных о взаимном расположении элементов молекулы. С другой стороны, подобно микрофотографии, такие 3D-структуры должны служить точными отображениями конкретных научных объектов. Это приводит к параллельному существованию двух противоречивых эпистемических режимов: творческий произвол в создании удобных, коммуникативно успешных моделей сочетается с верностью объекту «как он есть на самом деле». \\nПарадокс усиливается тем, что научное исследование репрезентируемых объектов (определение свойств структуры, ее функций, сравнение с другими структурами) посредством компьютеров само по себе вообще не требует визуализации. Ее очевидно высокая ценность для биоинформатики не выглядит оправданной, если иметь в виду значительную искусственность и художественность получаемых изображений. \\nОднако статус этих изображений становится яснее при соотнесении с более ранними представлениями о роли визуального в научном поиске. Высокая оценка визуализации как итогового результата научного исследования была характерна для науки эпохи Возрождения. Художественная репрезентация идеальных существенных свойств вместо строгого соответствия конкретному биологическому объекту – эпистемическая добродетель, типичная для натуралистов XVII–XVIII веков. И то и другое предполагало тесное сотрудничество ученого с художником; и стандарты визуализации макромолекул в биоинформатике вырастают из аналогичного сотрудничества (рисунки Гейса). Стремление же к максимальной точности и детализации наследует регулятиву «механической объективности» (как определяли это Л. Дастон и П. Галисон), для которого важным оказывается и устранение субъекта из процесса производства изображения (в биоинформатике – передача этих функций компьютерным программам). Таким образом, 3D-визуализация белковых структур несет на себе следы исторически разных ценностных ориентиров, но научная практика XX–XXI веков, дополненная компьютерными технологиями, позволяет им сочетаться в конкретных дисциплинарных единствах.\\n Bioinformatics scientists often describe their own scientific activities as the practice of working with large amounts of data using computing devices. An essential part of their self-identification is also the development of ways to visually represent the results of this work. Some of these methods are aimed at building convenient representations of data and demonstrating patterns present in them (graphics, diagrams, graphs). Others are ways of visualizing objects that are not directly accessible to human perception (microphotography, X-ray). Both the construction of visualizations and (especially) the creation of new computer visualization methods are considered in bioinformatics as significant scientific achievements. Representations of the three-dimensional structure of protein molecules play a special role in the inquiries of bioinformatics scientists. 3D-visualization of a macromolecule, on the one hand, is, like a graph, a representation of the results of computer processing of data arrays obtained by material methods – spatiotemporal coordinates of structural elements of the molecule. On the other hand, like microphotography, these 3D structures should serve as accurate representations of specific scientific objects. This leads to the parallel existence of two contradictory epistemic regimes: creative arbitrariness in making convenient, communicatively successful models, is combined with commitment to the object “as it really is”. The paradox is reinforced by the fact that the scientific study of objects in question (determining the properties of the structure, its functions, comparison with other structures) by means of computers does not require visualization at all. Its obviously high value for bioinformatics does not look justified if we take into account the prominent artificiality and artistry of the resulting images. However, the status of these images becomes clearer if we relate them to earlier notions of the role of the visual in scientific discovery. The highest estimation of visualization as the final result of scientific research was characteristic of Renaissance science. The artistic representation of ideal essential properties, instead of a strict correspondence to a particular biological object, is an epistemic virtue typical of the naturalists of the 17th and 18th centuries. Both suggested a close collaboration between the scientist and the artist; and standards for visualizing macromolecules in bioinformatics grow out of a similar collaboration (Geis’ drawings). The desire for maximum accuracy and detail inherits the regulation of “mechanical objectivity” (as Daston and Galison put it into words), for which it is also important to eliminate humans from the image production process (in bioinformatics, to transfer these functions to computer programs). Thus, 3D-visualization of protein structures bears traces of historically different value orientations, but the scientific practice of the 20th and 21st centuries, supplemented by computer technologies, allows them to be intertwined in particular disciplinary units.\",\"PeriodicalId\":37342,\"journal\":{\"name\":\"Praxema\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Praxema\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23951/2312-7899-2021-4-12-35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Praxema","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23951/2312-7899-2021-4-12-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
3D-VISUALIZATION OF MACROMOLECULES IN BIOINFORMATICS:
Биоинформатики часто описывают собственную научную деятельность как практику работы с большими объемами данных с помощью вычислительных устройств. Существенной частью этого самоопределения является создание способов визуального представления результатов такой работы, некоторые из которых направлены на построение удобных репрезентаций данных и демонстрацию закономерностей, присутствующих в них (графики, диаграммы, графы). Другие являются способами визуализации объектов, непосредственно не доступных человеческому восприятию (микрофотография, рентгенограмма). И создание визуализаций, и особенно создание новых компьютерных методов визуализации рассматриваются в биоинформатике как значимые научные достижения.
Репрезентации трехмерной структуры белковых молекул занимают особое место в деятельности биоинформатиков. 3D-визуализация макромолекулы, с одной стороны, является, подобно графику, представлением результатов компьютерной обработки массивов данных, полученных материальными методами, – данных о взаимном расположении элементов молекулы. С другой стороны, подобно микрофотографии, такие 3D-структуры должны служить точными отображениями конкретных научных объектов. Это приводит к параллельному существованию двух противоречивых эпистемических режимов: творческий произвол в создании удобных, коммуникативно успешных моделей сочетается с верностью объекту «как он есть на самом деле».
Парадокс усиливается тем, что научное исследование репрезентируемых объектов (определение свойств структуры, ее функций, сравнение с другими структурами) посредством компьютеров само по себе вообще не требует визуализации. Ее очевидно высокая ценность для биоинформатики не выглядит оправданной, если иметь в виду значительную искусственность и художественность получаемых изображений.
Однако статус этих изображений становится яснее при соотнесении с более ранними представлениями о роли визуального в научном поиске. Высокая оценка визуализации как итогового результата научного исследования была характерна для науки эпохи Возрождения. Художественная репрезентация идеальных существенных свойств вместо строгого соответствия конкретному биологическому объекту – эпистемическая добродетель, типичная для натуралистов XVII–XVIII веков. И то и другое предполагало тесное сотрудничество ученого с художником; и стандарты визуализации макромолекул в биоинформатике вырастают из аналогичного сотрудничества (рисунки Гейса). Стремление же к максимальной точности и детализации наследует регулятиву «механической объективности» (как определяли это Л. Дастон и П. Галисон), для которого важным оказывается и устранение субъекта из процесса производства изображения (в биоинформатике – передача этих функций компьютерным программам). Таким образом, 3D-визуализация белковых структур несет на себе следы исторически разных ценностных ориентиров, но научная практика XX–XXI веков, дополненная компьютерными технологиями, позволяет им сочетаться в конкретных дисциплинарных единствах.
Bioinformatics scientists often describe their own scientific activities as the practice of working with large amounts of data using computing devices. An essential part of their self-identification is also the development of ways to visually represent the results of this work. Some of these methods are aimed at building convenient representations of data and demonstrating patterns present in them (graphics, diagrams, graphs). Others are ways of visualizing objects that are not directly accessible to human perception (microphotography, X-ray). Both the construction of visualizations and (especially) the creation of new computer visualization methods are considered in bioinformatics as significant scientific achievements. Representations of the three-dimensional structure of protein molecules play a special role in the inquiries of bioinformatics scientists. 3D-visualization of a macromolecule, on the one hand, is, like a graph, a representation of the results of computer processing of data arrays obtained by material methods – spatiotemporal coordinates of structural elements of the molecule. On the other hand, like microphotography, these 3D structures should serve as accurate representations of specific scientific objects. This leads to the parallel existence of two contradictory epistemic regimes: creative arbitrariness in making convenient, communicatively successful models, is combined with commitment to the object “as it really is”. The paradox is reinforced by the fact that the scientific study of objects in question (determining the properties of the structure, its functions, comparison with other structures) by means of computers does not require visualization at all. Its obviously high value for bioinformatics does not look justified if we take into account the prominent artificiality and artistry of the resulting images. However, the status of these images becomes clearer if we relate them to earlier notions of the role of the visual in scientific discovery. The highest estimation of visualization as the final result of scientific research was characteristic of Renaissance science. The artistic representation of ideal essential properties, instead of a strict correspondence to a particular biological object, is an epistemic virtue typical of the naturalists of the 17th and 18th centuries. Both suggested a close collaboration between the scientist and the artist; and standards for visualizing macromolecules in bioinformatics grow out of a similar collaboration (Geis’ drawings). The desire for maximum accuracy and detail inherits the regulation of “mechanical objectivity” (as Daston and Galison put it into words), for which it is also important to eliminate humans from the image production process (in bioinformatics, to transfer these functions to computer programs). Thus, 3D-visualization of protein structures bears traces of historically different value orientations, but the scientific practice of the 20th and 21st centuries, supplemented by computer technologies, allows them to be intertwined in particular disciplinary units.