稀疏随机矩阵的奇异性:简单证明

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS Combinatorics, Probability & Computing Pub Date : 2020-11-02 DOI:10.1017/S0963548321000146
Asaf Ferber, Matthew Kwan, Lisa Sauermann
{"title":"稀疏随机矩阵的奇异性:简单证明","authors":"Asaf Ferber, Matthew Kwan, Lisa Sauermann","doi":"10.1017/S0963548321000146","DOIUrl":null,"url":null,"abstract":"\n Consider a random \n \n \n $n\\times n$\n \n zero-one matrix with ‘sparsity’ p, sampled according to one of the following two models: either every entry is independently taken to be one with probability p (the ‘Bernoulli’ model) or each row is independently uniformly sampled from the set of all length-n zero-one vectors with exactly pn ones (the ‘combinatorial’ model). We give simple proofs of the (essentially best-possible) fact that in both models, if \n \n \n $\\min(p,1-p)\\geq (1+\\varepsilon)\\log n/n$\n \n for any constant \n \n \n $\\varepsilon>0$\n \n , then our random matrix is nonsingular with probability \n \n \n $1-o(1)$\n \n . In the Bernoulli model, this fact was already well known, but in the combinatorial model this resolves a conjecture of Aigner-Horev and Person.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Singularity of sparse random matrices: simple proofs\",\"authors\":\"Asaf Ferber, Matthew Kwan, Lisa Sauermann\",\"doi\":\"10.1017/S0963548321000146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Consider a random \\n \\n \\n $n\\\\times n$\\n \\n zero-one matrix with ‘sparsity’ p, sampled according to one of the following two models: either every entry is independently taken to be one with probability p (the ‘Bernoulli’ model) or each row is independently uniformly sampled from the set of all length-n zero-one vectors with exactly pn ones (the ‘combinatorial’ model). We give simple proofs of the (essentially best-possible) fact that in both models, if \\n \\n \\n $\\\\min(p,1-p)\\\\geq (1+\\\\varepsilon)\\\\log n/n$\\n \\n for any constant \\n \\n \\n $\\\\varepsilon>0$\\n \\n , then our random matrix is nonsingular with probability \\n \\n \\n $1-o(1)$\\n \\n . In the Bernoulli model, this fact was already well known, but in the combinatorial model this resolves a conjecture of Aigner-Horev and Person.\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548321000146\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548321000146","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 10

摘要

考虑一个随机的$n\times n$ 0 - 1矩阵,其“稀疏度”为p,根据以下两种模型之一进行采样:要么每个条目都以p的概率独立地取为1(“伯努利”模型),要么从所有长度为n的0 - 1向量的集合中独立均匀地采样每一行,这些向量恰好是pn个(“组合”模型)。我们给出了简单的(本质上最好的)事实证明,在这两个模型中,如果$\min(p,1-p)\geq (1+\varepsilon)\log n/n$对于任意常数$\varepsilon>0$,那么我们的随机矩阵是非奇异的,概率为$1-o(1)$。在伯努利模型中,这个事实是众所周知的,但在组合模型中,这解决了Aigner-Horev和Person的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Singularity of sparse random matrices: simple proofs
Consider a random $n\times n$ zero-one matrix with ‘sparsity’ p, sampled according to one of the following two models: either every entry is independently taken to be one with probability p (the ‘Bernoulli’ model) or each row is independently uniformly sampled from the set of all length-n zero-one vectors with exactly pn ones (the ‘combinatorial’ model). We give simple proofs of the (essentially best-possible) fact that in both models, if $\min(p,1-p)\geq (1+\varepsilon)\log n/n$ for any constant $\varepsilon>0$ , then our random matrix is nonsingular with probability $1-o(1)$ . In the Bernoulli model, this fact was already well known, but in the combinatorial model this resolves a conjecture of Aigner-Horev and Person.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
期刊最新文献
Spanning trees in graphs without large bipartite holes Approximate discrete entropy monotonicity for log-concave sums A special case of Vu’s conjecture: colouring nearly disjoint graphs of bounded maximum degree Mastermind with a linear number of queries On oriented cycles in randomly perturbed digraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1