用手说话16.2M:用于会话运动分析和合成的同步身体-手指运动和音频的大规模数据集

Gilwoo Lee, Zhiwei Deng, Shugao Ma, Takaaki Shiratori, S. Srinivasa, Yaser Sheikh
{"title":"用手说话16.2M:用于会话运动分析和合成的同步身体-手指运动和音频的大规模数据集","authors":"Gilwoo Lee, Zhiwei Deng, Shugao Ma, Takaaki Shiratori, S. Srinivasa, Yaser Sheikh","doi":"10.1109/ICCV.2019.00085","DOIUrl":null,"url":null,"abstract":"We present a 16.2-million frame (50-hour) multimodal dataset of two-person face-to-face spontaneous conversations. Our dataset features synchronized body and finger motion as well as audio data. To the best of our knowledge, it represents the largest motion capture and audio dataset of natural conversations to date. The statistical analysis verifies strong intraperson and interperson covariance of arm, hand, and speech features, potentially enabling new directions on data-driven social behavior analysis, prediction, and synthesis. As an illustration, we propose a novel real-time finger motion synthesis method: a temporal neural network innovatively trained with an inverse kinematics (IK) loss, which adds skeletal structural information to the generative model. Our qualitative user study shows that the finger motion generated by our method is perceived as natural and conversation enhancing, while the quantitative ablation study demonstrates the effectiveness of IK loss.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"14 1","pages":"763-772"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Talking With Hands 16.2M: A Large-Scale Dataset of Synchronized Body-Finger Motion and Audio for Conversational Motion Analysis and Synthesis\",\"authors\":\"Gilwoo Lee, Zhiwei Deng, Shugao Ma, Takaaki Shiratori, S. Srinivasa, Yaser Sheikh\",\"doi\":\"10.1109/ICCV.2019.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a 16.2-million frame (50-hour) multimodal dataset of two-person face-to-face spontaneous conversations. Our dataset features synchronized body and finger motion as well as audio data. To the best of our knowledge, it represents the largest motion capture and audio dataset of natural conversations to date. The statistical analysis verifies strong intraperson and interperson covariance of arm, hand, and speech features, potentially enabling new directions on data-driven social behavior analysis, prediction, and synthesis. As an illustration, we propose a novel real-time finger motion synthesis method: a temporal neural network innovatively trained with an inverse kinematics (IK) loss, which adds skeletal structural information to the generative model. Our qualitative user study shows that the finger motion generated by our method is perceived as natural and conversation enhancing, while the quantitative ablation study demonstrates the effectiveness of IK loss.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"14 1\",\"pages\":\"763-772\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

我们提出了一个1620万帧(50小时)的双人面对面自发对话的多模式数据集。我们的数据集具有同步的身体和手指运动以及音频数据。据我们所知,它代表了迄今为止最大的自然对话的动作捕捉和音频数据集。统计分析验证了手臂,手和语音特征的强内部和人际协方差,可能为数据驱动的社会行为分析,预测和综合提供新的方向。为了说明这一点,我们提出了一种新的实时手指运动合成方法:一种创新地使用逆运动学(IK)损失训练的时间神经网络,它将骨骼结构信息添加到生成模型中。我们的定性用户研究表明,通过我们的方法产生的手指运动被认为是自然的,并增强了会话,而定量消融研究表明了IK损失的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Talking With Hands 16.2M: A Large-Scale Dataset of Synchronized Body-Finger Motion and Audio for Conversational Motion Analysis and Synthesis
We present a 16.2-million frame (50-hour) multimodal dataset of two-person face-to-face spontaneous conversations. Our dataset features synchronized body and finger motion as well as audio data. To the best of our knowledge, it represents the largest motion capture and audio dataset of natural conversations to date. The statistical analysis verifies strong intraperson and interperson covariance of arm, hand, and speech features, potentially enabling new directions on data-driven social behavior analysis, prediction, and synthesis. As an illustration, we propose a novel real-time finger motion synthesis method: a temporal neural network innovatively trained with an inverse kinematics (IK) loss, which adds skeletal structural information to the generative model. Our qualitative user study shows that the finger motion generated by our method is perceived as natural and conversation enhancing, while the quantitative ablation study demonstrates the effectiveness of IK loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1