基于卷积网络的唇印识别算法

Hongcheng Zhou
{"title":"基于卷积网络的唇印识别算法","authors":"Hongcheng Zhou","doi":"10.1155/2023/4448861","DOIUrl":null,"url":null,"abstract":"Identity information security is faced with various challenges, and the traditional identification technology cannot meet the needs of public security. Therefore, it is necessary to further explore and study new identification technologies. In order to solve the complex image preprocessing problems, difficult feature extraction by artificial design algorithm, and low accuracy of lip print recognition, a method based on the convolutional neural network is proposed, by building a convolutional neural network called LPRNet (Lip Print Recognition Network). The obtained lip print image is inputted into the training recognition model of the network to simplify the lip print image preprocessing. By extracting feature information and sampling operation, the model training parameters are reduced, which overcomes the difficulty of designing a complex algorithm to extract features. By analyzing and comparing the experimental results, a higher recognition rate is obtained, and the validity of the method is verified.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"35 1","pages":"4448861:1-4448861:8"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lip Print Recognition Algorithm Based on Convolutional Network\",\"authors\":\"Hongcheng Zhou\",\"doi\":\"10.1155/2023/4448861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identity information security is faced with various challenges, and the traditional identification technology cannot meet the needs of public security. Therefore, it is necessary to further explore and study new identification technologies. In order to solve the complex image preprocessing problems, difficult feature extraction by artificial design algorithm, and low accuracy of lip print recognition, a method based on the convolutional neural network is proposed, by building a convolutional neural network called LPRNet (Lip Print Recognition Network). The obtained lip print image is inputted into the training recognition model of the network to simplify the lip print image preprocessing. By extracting feature information and sampling operation, the model training parameters are reduced, which overcomes the difficulty of designing a complex algorithm to extract features. By analyzing and comparing the experimental results, a higher recognition rate is obtained, and the validity of the method is verified.\",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"35 1\",\"pages\":\"4448861:1-4448861:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4448861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4448861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

身份信息安全面临着各种挑战,传统的身份识别技术已不能满足公共安全的需求。因此,有必要进一步探索和研究新的识别技术。针对唇印识别中图像预处理复杂、人工设计算法特征提取困难、准确率低等问题,提出了一种基于卷积神经网络的唇印识别方法,通过构建卷积神经网络LPRNet (lip print recognition network)。将得到的唇印图像输入到网络的训练识别模型中,简化唇印图像的预处理。通过特征信息提取和采样操作,减少了模型训练参数,克服了设计复杂特征提取算法的困难。通过对实验结果的分析和比较,获得了较高的识别率,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lip Print Recognition Algorithm Based on Convolutional Network
Identity information security is faced with various challenges, and the traditional identification technology cannot meet the needs of public security. Therefore, it is necessary to further explore and study new identification technologies. In order to solve the complex image preprocessing problems, difficult feature extraction by artificial design algorithm, and low accuracy of lip print recognition, a method based on the convolutional neural network is proposed, by building a convolutional neural network called LPRNet (Lip Print Recognition Network). The obtained lip print image is inputted into the training recognition model of the network to simplify the lip print image preprocessing. By extracting feature information and sampling operation, the model training parameters are reduced, which overcomes the difficulty of designing a complex algorithm to extract features. By analyzing and comparing the experimental results, a higher recognition rate is obtained, and the validity of the method is verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Malaria Control Strategy: Optimal Control and Cost-Effectiveness Analysis on the Impact of Vector Bias on the Efficacy of Mosquito Repellent and Hospitalization Analytical Approximate Solutions of Caputo Fractional KdV-Burgers Equations Using Laplace Residual Power Series Technique An Efficient New Technique for Solving Nonlinear Problems Involving the Conformable Fractional Derivatives Application of Improved WOA in Hammerstein Parameter Resolution Problems under Advanced Mathematical Theory Intelligent Optimization Model of Enterprise Financial Account Receivable Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1