{"title":"定制沸石复合材料(ZC)浸渍耐热无孔醋酸纤维素膜的潜在气体分离和抗菌性能","authors":"Zainab Fatima, Amina Afzal, Sakeena Arshad","doi":"10.4028/p-c80drd","DOIUrl":null,"url":null,"abstract":"Cellulose acetate (CA) composite membranes are tailored for potential gas-transportation and antibacterial activity by incorporating various ratios (0-8wt. %) of zeolite-CuO (10:1, ZC) composite. The aim behind this is to develop an anti-biofouling membrane with enhanced CO2 permeation and selection properties. In situ coprecipitation route is adopted to synthesize ZC that imparted morphological, structural, thermal, and performance characteristics of membranes synthesized by solution casting mechanism. FESEM analysis revealed, pores size transformed from 1µm to 1.4 nm as observed in M0 (virgin) and M4 (8wt. % ZC) membranes, respectively. The existence and linkages of impregnated ZC in the developed membranes are verified by FTIR investigations. TGA-tested thermally endured membranes are tested for gas permeation/selectivity. In comparison to virgin CA membrane, three folds enhancements in CO2 permeation and two folds in CO2/N2 selectivity are observed. Membranes are also evaluated for antibacterial test against ‘gram-negative bacteria’ elucidates that increasing ZC content in composite membranes exhibit remarkable results.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"17 1","pages":"43 - 58"},"PeriodicalIF":0.8000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tailoring Zeolite-Composite (ZC) Impregnated Thermally Endured Nonporous Cellulose Acetate Membranes for Potential Gas Separation and Antibacterial Performances\",\"authors\":\"Zainab Fatima, Amina Afzal, Sakeena Arshad\",\"doi\":\"10.4028/p-c80drd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellulose acetate (CA) composite membranes are tailored for potential gas-transportation and antibacterial activity by incorporating various ratios (0-8wt. %) of zeolite-CuO (10:1, ZC) composite. The aim behind this is to develop an anti-biofouling membrane with enhanced CO2 permeation and selection properties. In situ coprecipitation route is adopted to synthesize ZC that imparted morphological, structural, thermal, and performance characteristics of membranes synthesized by solution casting mechanism. FESEM analysis revealed, pores size transformed from 1µm to 1.4 nm as observed in M0 (virgin) and M4 (8wt. % ZC) membranes, respectively. The existence and linkages of impregnated ZC in the developed membranes are verified by FTIR investigations. TGA-tested thermally endured membranes are tested for gas permeation/selectivity. In comparison to virgin CA membrane, three folds enhancements in CO2 permeation and two folds in CO2/N2 selectivity are observed. Membranes are also evaluated for antibacterial test against ‘gram-negative bacteria’ elucidates that increasing ZC content in composite membranes exhibit remarkable results.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"17 1\",\"pages\":\"43 - 58\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-c80drd\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-c80drd","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tailoring Zeolite-Composite (ZC) Impregnated Thermally Endured Nonporous Cellulose Acetate Membranes for Potential Gas Separation and Antibacterial Performances
Cellulose acetate (CA) composite membranes are tailored for potential gas-transportation and antibacterial activity by incorporating various ratios (0-8wt. %) of zeolite-CuO (10:1, ZC) composite. The aim behind this is to develop an anti-biofouling membrane with enhanced CO2 permeation and selection properties. In situ coprecipitation route is adopted to synthesize ZC that imparted morphological, structural, thermal, and performance characteristics of membranes synthesized by solution casting mechanism. FESEM analysis revealed, pores size transformed from 1µm to 1.4 nm as observed in M0 (virgin) and M4 (8wt. % ZC) membranes, respectively. The existence and linkages of impregnated ZC in the developed membranes are verified by FTIR investigations. TGA-tested thermally endured membranes are tested for gas permeation/selectivity. In comparison to virgin CA membrane, three folds enhancements in CO2 permeation and two folds in CO2/N2 selectivity are observed. Membranes are also evaluated for antibacterial test against ‘gram-negative bacteria’ elucidates that increasing ZC content in composite membranes exhibit remarkable results.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.