贝叶斯网络分类器的可扩展学习

Ana M. Martínez, Geoffrey I. Webb, Shenglei Chen, Nayyar Zaidi
{"title":"贝叶斯网络分类器的可扩展学习","authors":"Ana M. Martínez, Geoffrey I. Webb, Shenglei Chen, Nayyar Zaidi","doi":"10.5555/2946645.2946689","DOIUrl":null,"url":null,"abstract":"Ever increasing data quantity makes ever more urgent the need for highly scalable learners that have good classification performance. Therefore, an out-of-core learner with excellent time and space complexity, along with high expressivity (that is, capacity to learn very complex multivariate probability distributions) is extremely desirable. This paper presents such a learner. We propose an extension to the k-dependence Bayesian classifier (KDB) that discriminatively selects a sub-model of a full KDB classifier. It requires only one additional pass through the training data, making it a three-pass learner. Our extensive experimental evaluation on 16 large data sets reveals that this out-of-core algorithm achieves competitive classification performance, and substantially better training and classification time than state-of-the-art in-core learners such as random forest and linear and non-linear logistic regression.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"32 1","pages":"44:1-44:35"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Scalable Learning of Bayesian Network Classifiers\",\"authors\":\"Ana M. Martínez, Geoffrey I. Webb, Shenglei Chen, Nayyar Zaidi\",\"doi\":\"10.5555/2946645.2946689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ever increasing data quantity makes ever more urgent the need for highly scalable learners that have good classification performance. Therefore, an out-of-core learner with excellent time and space complexity, along with high expressivity (that is, capacity to learn very complex multivariate probability distributions) is extremely desirable. This paper presents such a learner. We propose an extension to the k-dependence Bayesian classifier (KDB) that discriminatively selects a sub-model of a full KDB classifier. It requires only one additional pass through the training data, making it a three-pass learner. Our extensive experimental evaluation on 16 large data sets reveals that this out-of-core algorithm achieves competitive classification performance, and substantially better training and classification time than state-of-the-art in-core learners such as random forest and linear and non-linear logistic regression.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"32 1\",\"pages\":\"44:1-44:35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2946645.2946689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2946645.2946689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

随着数据量的不断增加,对具有良好分类性能的高可扩展性学习器的需求日益迫切。因此,一个具有出色的时间和空间复杂性,以及高表达能力(即学习非常复杂的多元概率分布的能力)的外核学习器是非常可取的。本文提出了这样一个学习器。我们提出了k依赖贝叶斯分类器(KDB)的扩展,该扩展可以判别地选择完整KDB分类器的子模型。它只需要额外通过一次训练数据,使其成为一个三次学习。我们对16个大型数据集进行了广泛的实验评估,结果表明,这种核心外算法实现了具有竞争力的分类性能,并且比最先进的核心内学习器(如随机森林和线性和非线性逻辑回归)的训练和分类时间要短得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable Learning of Bayesian Network Classifiers
Ever increasing data quantity makes ever more urgent the need for highly scalable learners that have good classification performance. Therefore, an out-of-core learner with excellent time and space complexity, along with high expressivity (that is, capacity to learn very complex multivariate probability distributions) is extremely desirable. This paper presents such a learner. We propose an extension to the k-dependence Bayesian classifier (KDB) that discriminatively selects a sub-model of a full KDB classifier. It requires only one additional pass through the training data, making it a three-pass learner. Our extensive experimental evaluation on 16 large data sets reveals that this out-of-core algorithm achieves competitive classification performance, and substantially better training and classification time than state-of-the-art in-core learners such as random forest and linear and non-linear logistic regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1