水含量在钛阳极氧化制备TiO2纳米管中的作用及其性能

S. Nishanthi, S. Iyyapushpam, Pathinettam Padiyan
{"title":"水含量在钛阳极氧化制备TiO2纳米管中的作用及其性能","authors":"S. Nishanthi, S. Iyyapushpam, Pathinettam Padiyan","doi":"10.1109/ICANMEET.2013.6609302","DOIUrl":null,"url":null,"abstract":"The effect of water content in anodization of Ti foil on photoelectrochemical activity of TiO2 nanotubes fabricated were studied and optimized. The mixed phase of TiO2 was confirmed from X-ray diffraction and their morphological changes with respect to increase in water content were analyzed using High Resolution Scanning Electron Microscope. The optical band gap of TiO2 can be effectively tuned from 3.023(2) to 2.601(7) eV by varying the water content in anodization. The maximum photocurrent density of 2.5 mA/cm2 was observed for the TiO2 sample with higher crystallinity. These results suggest that the higher crystallinity with ordered nanotubes and lesser band gap act as a key role in improving the photoelectrochemical activity of TiO2.","PeriodicalId":13708,"journal":{"name":"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies","volume":"43 1","pages":"320-323"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Role of water content in anodization of titanium to fabricate TiO2 nanotubes and its properties\",\"authors\":\"S. Nishanthi, S. Iyyapushpam, Pathinettam Padiyan\",\"doi\":\"10.1109/ICANMEET.2013.6609302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of water content in anodization of Ti foil on photoelectrochemical activity of TiO2 nanotubes fabricated were studied and optimized. The mixed phase of TiO2 was confirmed from X-ray diffraction and their morphological changes with respect to increase in water content were analyzed using High Resolution Scanning Electron Microscope. The optical band gap of TiO2 can be effectively tuned from 3.023(2) to 2.601(7) eV by varying the water content in anodization. The maximum photocurrent density of 2.5 mA/cm2 was observed for the TiO2 sample with higher crystallinity. These results suggest that the higher crystallinity with ordered nanotubes and lesser band gap act as a key role in improving the photoelectrochemical activity of TiO2.\",\"PeriodicalId\":13708,\"journal\":{\"name\":\"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies\",\"volume\":\"43 1\",\"pages\":\"320-323\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICANMEET.2013.6609302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICANMEET.2013.6609302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究并优化了钛箔阳极氧化过程中含水量对制备的TiO2纳米管光电化学活性的影响。通过x射线衍射确定了TiO2的混合相,并用高分辨率扫描电镜分析了TiO2随含水量增加而发生的形态变化。通过改变阳极氧化过程中的水含量,TiO2的光学带隙可以有效地从3.023(2)eV调节到2.601(7)eV。结晶度较高的TiO2样品最大光电流密度为2.5 mA/cm2。这些结果表明,具有有序纳米管的高结晶度和小带隙是提高TiO2光电化学活性的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of water content in anodization of titanium to fabricate TiO2 nanotubes and its properties
The effect of water content in anodization of Ti foil on photoelectrochemical activity of TiO2 nanotubes fabricated were studied and optimized. The mixed phase of TiO2 was confirmed from X-ray diffraction and their morphological changes with respect to increase in water content were analyzed using High Resolution Scanning Electron Microscope. The optical band gap of TiO2 can be effectively tuned from 3.023(2) to 2.601(7) eV by varying the water content in anodization. The maximum photocurrent density of 2.5 mA/cm2 was observed for the TiO2 sample with higher crystallinity. These results suggest that the higher crystallinity with ordered nanotubes and lesser band gap act as a key role in improving the photoelectrochemical activity of TiO2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emerging Nanomaterials: Opportunities and Challenges in Forestry Sectors Low temperature aluminum induced crystallization of HWCVD deposited a-Si:H Effect of Nd on structural and optical properties of Nd doped ZnO nanoparticles Numerical analysis of a ceramic matrix composites with strain induced damage using finite element method Multi response optimization of sintering parameters of nano copper oxide reinforced Metal Matrix composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1