{"title":"大肠杆菌中lac操纵子的有限状态机和马尔可夫等价","authors":"Urooj Ainuddin, Maria Waqas","doi":"10.3934/bioeng.2022029","DOIUrl":null,"url":null,"abstract":"<abstract> <p>The <italic>lac</italic> operon in <italic>E. coli</italic> has been extensively studied by computational biologists. The bacterium uses it to survive in the absence of glucose, utilizing lactose for growth. This paper presents a novel modeling mechanism for the <italic>lac</italic> operon, transferring the process of lactose metabolism from the cell to a finite state machine (FSM). This FSM is implemented in field-programmable gate array (FPGA) and simulations are run in random conditions. A Markov chain is also proposed for the <italic>lac</italic> operon, which helps study its behavior in terms of probabilistic variables, validating the finite state machine at the same time. This work is focused towards conversion of biological processes into computing machines.</p> </abstract>","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite state machine and Markovian equivalents of the lac Operon in E. coli bacterium\",\"authors\":\"Urooj Ainuddin, Maria Waqas\",\"doi\":\"10.3934/bioeng.2022029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract> <p>The <italic>lac</italic> operon in <italic>E. coli</italic> has been extensively studied by computational biologists. The bacterium uses it to survive in the absence of glucose, utilizing lactose for growth. This paper presents a novel modeling mechanism for the <italic>lac</italic> operon, transferring the process of lactose metabolism from the cell to a finite state machine (FSM). This FSM is implemented in field-programmable gate array (FPGA) and simulations are run in random conditions. A Markov chain is also proposed for the <italic>lac</italic> operon, which helps study its behavior in terms of probabilistic variables, validating the finite state machine at the same time. This work is focused towards conversion of biological processes into computing machines.</p> </abstract>\",\"PeriodicalId\":45029,\"journal\":{\"name\":\"AIMS Bioengineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/bioeng.2022029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2022029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Finite state machine and Markovian equivalents of the lac Operon in E. coli bacterium
The lac operon in E. coli has been extensively studied by computational biologists. The bacterium uses it to survive in the absence of glucose, utilizing lactose for growth. This paper presents a novel modeling mechanism for the lac operon, transferring the process of lactose metabolism from the cell to a finite state machine (FSM). This FSM is implemented in field-programmable gate array (FPGA) and simulations are run in random conditions. A Markov chain is also proposed for the lac operon, which helps study its behavior in terms of probabilistic variables, validating the finite state machine at the same time. This work is focused towards conversion of biological processes into computing machines.