{"title":"随机块模型的邻接矩阵比较","authors":"Guangren Yang, Songshan Yang, Wang Zhou","doi":"10.1142/S2010326319500102","DOIUrl":null,"url":null,"abstract":"In this paper, we study whether two networks arising from two stochastic block models have the same connection structures by comparing their adjacency matrices. We conduct Monte Carlo simulations study to examine the finite sample performance of the proposed method. A real data example is used to illustrate the proposed methodology.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"131 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adjacency matrix comparison for stochastic block models\",\"authors\":\"Guangren Yang, Songshan Yang, Wang Zhou\",\"doi\":\"10.1142/S2010326319500102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study whether two networks arising from two stochastic block models have the same connection structures by comparing their adjacency matrices. We conduct Monte Carlo simulations study to examine the finite sample performance of the proposed method. A real data example is used to illustrate the proposed methodology.\",\"PeriodicalId\":54329,\"journal\":{\"name\":\"Random Matrices-Theory and Applications\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Matrices-Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326319500102\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326319500102","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Adjacency matrix comparison for stochastic block models
In this paper, we study whether two networks arising from two stochastic block models have the same connection structures by comparing their adjacency matrices. We conduct Monte Carlo simulations study to examine the finite sample performance of the proposed method. A real data example is used to illustrate the proposed methodology.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.