基于光学扫描结果的机械零件表面识别

M. Bolotov, V. Pechenin, N. V. Ruzanov, E. Kolchina
{"title":"基于光学扫描结果的机械零件表面识别","authors":"M. Bolotov, V. Pechenin, N. V. Ruzanov, E. Kolchina","doi":"10.18287/1613-0073-2019-2391-342-349","DOIUrl":null,"url":null,"abstract":"To predict the quality parameters of products (in particular, the assembly parameters) mathematical models were implemented in the form of computer models. To ensure the adequacy of calculations, it is necessary to have information about the actual geometry of the parts, which can be obtained using noncontact measurements of parts of the assembly. As a result of measuring parts and components using optical or laser scanner, a large dimension array of measured points is formed. After standard processing (e.g. noise removal, combining the scans, smoothing, creating triangulation mesh), the recognition of individual surfaces of parts becomes necessary. This paper presents a neural network model that allows the recognition of elements based on an array of measured points obtained by scanning.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Surface recognition of machine parts based on the results of optical scanning\",\"authors\":\"M. Bolotov, V. Pechenin, N. V. Ruzanov, E. Kolchina\",\"doi\":\"10.18287/1613-0073-2019-2391-342-349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To predict the quality parameters of products (in particular, the assembly parameters) mathematical models were implemented in the form of computer models. To ensure the adequacy of calculations, it is necessary to have information about the actual geometry of the parts, which can be obtained using noncontact measurements of parts of the assembly. As a result of measuring parts and components using optical or laser scanner, a large dimension array of measured points is formed. After standard processing (e.g. noise removal, combining the scans, smoothing, creating triangulation mesh), the recognition of individual surfaces of parts becomes necessary. This paper presents a neural network model that allows the recognition of elements based on an array of measured points obtained by scanning.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2391-342-349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-342-349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了预测产品的质量参数(特别是装配参数),以计算机模型的形式实现了数学模型。为了确保计算的充分性,有必要获得有关零件实际几何形状的信息,这些信息可以通过对装配零件的非接触测量获得。由于使用光学或激光扫描仪测量零件和组件,形成了一个大尺寸的测点阵列。经过标准处理(例如去除噪声,结合扫描,平滑,创建三角网格)后,必须识别零件的单个表面。本文提出了一种基于扫描得到的一组测量点来识别元素的神经网络模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface recognition of machine parts based on the results of optical scanning
To predict the quality parameters of products (in particular, the assembly parameters) mathematical models were implemented in the form of computer models. To ensure the adequacy of calculations, it is necessary to have information about the actual geometry of the parts, which can be obtained using noncontact measurements of parts of the assembly. As a result of measuring parts and components using optical or laser scanner, a large dimension array of measured points is formed. After standard processing (e.g. noise removal, combining the scans, smoothing, creating triangulation mesh), the recognition of individual surfaces of parts becomes necessary. This paper presents a neural network model that allows the recognition of elements based on an array of measured points obtained by scanning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1