六氰铁酸盐(II)与吡嗪之间配体取代反应的动力学催化及光度法测定汞(II

Radhey Mohan Naik, Pradeep Kumar Singh, Richa Rastogi, Ruchi Singh, Abhinav Agarwal
{"title":"六氰铁酸盐(II)与吡嗪之间配体取代反应的动力学催化及光度法测定汞(II","authors":"Radhey Mohan Naik,&nbsp;Pradeep Kumar Singh,&nbsp;Richa Rastogi,&nbsp;Ruchi Singh,&nbsp;Abhinav Agarwal","doi":"10.1002/adic.200790103","DOIUrl":null,"url":null,"abstract":"<p>A sensitive, simple and rapid spectrophotometric method for the determination of mercury (II) based on its catalytic effect on the abstraction of coordinated cyanide from hexacyanoferrate (II) by pyrazine has been developed using fixed time procedure. The extent of the reaction is monitored spectrophotometrically by measuring the increase in absorbance at λ<sub>max</sub>=440 nm of the yellow colored complex, [Fe(CN)<sub>5</sub>Pz]<sup>3−</sup> under the reaction conditions; [Fe(CN)<sub>6</sub>]<sup>4−</sup>=7.2×10<sup>−3</sup> mol L<sup>−1</sup>, [P<sub>z</sub>]=3.75×10<sup>−4</sup> mol L<sup>−1</sup>, temperature=25.0±0.1 °C, pH= 2.50±0.02 and I=0.1 mol L<sup>−1</sup>(KNO<sub>3</sub>). The experimental rate data under the conditions used in the present study exhibited a linear dependence between absorbance and [Hg<sup>2+</sup>] catalyst in the range 5.065–50.15 ng mL<sup>−1</sup>. The detection limit is found to be 4.01 ng mL<sup>−1</sup>. The maximum relative standard deviations and percentage errors for mercury(II) determination are found to be 2.2 and 3 % respectively. The percentage recoveries are found to be in the range of 99–102 %. Analytical data fordetermination of mercury(II) is presented together with the application of proposed method in water spiked synthetic mixtures. The validity of the proposed method is tested by comparing the results obtained by present method with atomic absorption spectrometry.</p>","PeriodicalId":8193,"journal":{"name":"Annali di chimica","volume":"97 11-12","pages":"1169-1179"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/adic.200790103","citationCount":"7","resultStr":"{\"title\":\"Kinetic-Catalytic and Spectrophotometric Determination of Hg(II) Using its Catalytic Effect on Ligand Substitution Reaction between Hexacyanoferrate(II) and Pyrazine\",\"authors\":\"Radhey Mohan Naik,&nbsp;Pradeep Kumar Singh,&nbsp;Richa Rastogi,&nbsp;Ruchi Singh,&nbsp;Abhinav Agarwal\",\"doi\":\"10.1002/adic.200790103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A sensitive, simple and rapid spectrophotometric method for the determination of mercury (II) based on its catalytic effect on the abstraction of coordinated cyanide from hexacyanoferrate (II) by pyrazine has been developed using fixed time procedure. The extent of the reaction is monitored spectrophotometrically by measuring the increase in absorbance at λ<sub>max</sub>=440 nm of the yellow colored complex, [Fe(CN)<sub>5</sub>Pz]<sup>3−</sup> under the reaction conditions; [Fe(CN)<sub>6</sub>]<sup>4−</sup>=7.2×10<sup>−3</sup> mol L<sup>−1</sup>, [P<sub>z</sub>]=3.75×10<sup>−4</sup> mol L<sup>−1</sup>, temperature=25.0±0.1 °C, pH= 2.50±0.02 and I=0.1 mol L<sup>−1</sup>(KNO<sub>3</sub>). The experimental rate data under the conditions used in the present study exhibited a linear dependence between absorbance and [Hg<sup>2+</sup>] catalyst in the range 5.065–50.15 ng mL<sup>−1</sup>. The detection limit is found to be 4.01 ng mL<sup>−1</sup>. The maximum relative standard deviations and percentage errors for mercury(II) determination are found to be 2.2 and 3 % respectively. The percentage recoveries are found to be in the range of 99–102 %. Analytical data fordetermination of mercury(II) is presented together with the application of proposed method in water spiked synthetic mixtures. The validity of the proposed method is tested by comparing the results obtained by present method with atomic absorption spectrometry.</p>\",\"PeriodicalId\":8193,\"journal\":{\"name\":\"Annali di chimica\",\"volume\":\"97 11-12\",\"pages\":\"1169-1179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/adic.200790103\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di chimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adic.200790103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di chimica","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adic.200790103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用汞(II)对吡嗪萃取六氰高铁酸盐(II)中配位氰化物的催化作用,建立了一种灵敏、简便、快速的固定时间光度法测定汞(II)的方法。通过测定在反应条件下黄色配合物[Fe(CN)5Pz]3−在λmax=440 nm处吸光度的增加,分光光度法监测了反应的程度;[Fe(CN)6]4−=7.2×10−3 mol L−1,[Pz]=3.75×10−4 mol L−1,温度=25.0±0.1℃,pH= 2.50±0.02,I=0.1 mol L−1(KNO3)。在本研究条件下的实验速率数据显示,吸光度与[Hg2+]催化剂在5.065 ~ 50.15 ng mL−1范围内呈线性关系。检测限为4.01 ng mL−1。汞(II)测定的最大相对标准偏差和百分比误差分别为2.2%和3%。加样回收率为99 ~ 102%。给出了测定汞(II)的分析数据,并介绍了该方法在加水合成混合物中的应用。通过与原子吸收光谱法测定结果的比较,验证了方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinetic-Catalytic and Spectrophotometric Determination of Hg(II) Using its Catalytic Effect on Ligand Substitution Reaction between Hexacyanoferrate(II) and Pyrazine

A sensitive, simple and rapid spectrophotometric method for the determination of mercury (II) based on its catalytic effect on the abstraction of coordinated cyanide from hexacyanoferrate (II) by pyrazine has been developed using fixed time procedure. The extent of the reaction is monitored spectrophotometrically by measuring the increase in absorbance at λmax=440 nm of the yellow colored complex, [Fe(CN)5Pz]3− under the reaction conditions; [Fe(CN)6]4−=7.2×10−3 mol L−1, [Pz]=3.75×10−4 mol L−1, temperature=25.0±0.1 °C, pH= 2.50±0.02 and I=0.1 mol L−1(KNO3). The experimental rate data under the conditions used in the present study exhibited a linear dependence between absorbance and [Hg2+] catalyst in the range 5.065–50.15 ng mL−1. The detection limit is found to be 4.01 ng mL−1. The maximum relative standard deviations and percentage errors for mercury(II) determination are found to be 2.2 and 3 % respectively. The percentage recoveries are found to be in the range of 99–102 %. Analytical data fordetermination of mercury(II) is presented together with the application of proposed method in water spiked synthetic mixtures. The validity of the proposed method is tested by comparing the results obtained by present method with atomic absorption spectrometry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Solid Phase Microextraction-High Performance Liquid Chromatographic Method for the Determination of Copper(II) in Environmental Samples Using Morpholine-4-Carbodithioate Flotation Separation and Flame Atomic Absorption Spectrometric Determination of Trace Amount of Lead in Some Environmental Samples Investigation of Distribution of Heavy Metals between Blood Plasma and Blood Cells Kinetic-Catalytic and Spectrophotometric Determination of Hg(II) Using its Catalytic Effect on Ligand Substitution Reaction between Hexacyanoferrate(II) and Pyrazine PVC Matrix Membrane Sensor for Potentiometric Determination of Triphenyltetrazolium Chloride and Ascorbic Acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1