无线传感器网络中多无人机辅助数据采集:一种优化网络寿命的MILP方法

Chi-Hieu Nguyen, Khanh-Van Nguyen
{"title":"无线传感器网络中多无人机辅助数据采集:一种优化网络寿命的MILP方法","authors":"Chi-Hieu Nguyen, Khanh-Van Nguyen","doi":"10.1109/RIVF51545.2021.9642131","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of gathering data from large-scale wireless sensor networks using multiple unmanned air vehicles (UAVs) to gather data at designated rendezvouses, where the goal is to maximize the network lifetime. Previous proposals often consider a practical approach where the problem of determining a data gathering scheme is decomposed into 2 sub-problems: i) partitioning the networks into clusters for determining the rendezvouses as these obtained cluster heads; and ii) determining the paths for a set of a given number of UAVs to come gathering data at these rendezvouses which have been harvesting data within each local clusters, respectively. We try to deal with this as a whole optimization problem, expecting a significant increase in computation complexity which would bring new challenge in creating practical solutions for largescale WSNs. We introduce two alternatives mixed-integer linear programming (MILP) formulations and we show that our best model could solve the problem instances optimally with up to 50 sensor nodes in less than 30 minutes. Next, we propose a heuristic idea to reduce the number of variables in implementing the 3-index model to effectively handle larger-scale networks with size in hundreds. The experiment results show that our heuristic approach significantly prolongs the network lifetime compared to existing most efficient proposals.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"5 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-UAV Assisted Data Gathering in WSN: A MILP Approach For Optimizing Network Lifetime\",\"authors\":\"Chi-Hieu Nguyen, Khanh-Van Nguyen\",\"doi\":\"10.1109/RIVF51545.2021.9642131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the problem of gathering data from large-scale wireless sensor networks using multiple unmanned air vehicles (UAVs) to gather data at designated rendezvouses, where the goal is to maximize the network lifetime. Previous proposals often consider a practical approach where the problem of determining a data gathering scheme is decomposed into 2 sub-problems: i) partitioning the networks into clusters for determining the rendezvouses as these obtained cluster heads; and ii) determining the paths for a set of a given number of UAVs to come gathering data at these rendezvouses which have been harvesting data within each local clusters, respectively. We try to deal with this as a whole optimization problem, expecting a significant increase in computation complexity which would bring new challenge in creating practical solutions for largescale WSNs. We introduce two alternatives mixed-integer linear programming (MILP) formulations and we show that our best model could solve the problem instances optimally with up to 50 sensor nodes in less than 30 minutes. Next, we propose a heuristic idea to reduce the number of variables in implementing the 3-index model to effectively handle larger-scale networks with size in hundreds. The experiment results show that our heuristic approach significantly prolongs the network lifetime compared to existing most efficient proposals.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"5 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了从大型无线传感器网络中收集数据的问题,使用多架无人驾驶飞行器(uav)在指定的集合点收集数据,其目标是最大化网络寿命。以前的建议通常考虑一种实用的方法,其中确定数据收集方案的问题被分解为两个子问题:i)将网络划分为簇,以确定这些获得的簇头的会合点;以及ii)确定一组给定数量的无人机在这些分别在每个局部集群中收集数据的会合点收集数据的路径。我们试图将其作为一个整体的优化问题来处理,预计计算复杂度将显著增加,这将为大规模wsn的实际解决方案带来新的挑战。我们引入了两种替代的混合整数线性规划(MILP)公式,并表明我们的最佳模型可以在不到30分钟的时间内最优地解决多达50个传感器节点的问题实例。接下来,我们提出了一种启发式思想,以减少实现3指数模型的变量数量,从而有效地处理数百个规模的大型网络。实验结果表明,与现有最有效的方法相比,我们的启发式方法显著延长了网络的生存期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-UAV Assisted Data Gathering in WSN: A MILP Approach For Optimizing Network Lifetime
In this paper, we study the problem of gathering data from large-scale wireless sensor networks using multiple unmanned air vehicles (UAVs) to gather data at designated rendezvouses, where the goal is to maximize the network lifetime. Previous proposals often consider a practical approach where the problem of determining a data gathering scheme is decomposed into 2 sub-problems: i) partitioning the networks into clusters for determining the rendezvouses as these obtained cluster heads; and ii) determining the paths for a set of a given number of UAVs to come gathering data at these rendezvouses which have been harvesting data within each local clusters, respectively. We try to deal with this as a whole optimization problem, expecting a significant increase in computation complexity which would bring new challenge in creating practical solutions for largescale WSNs. We introduce two alternatives mixed-integer linear programming (MILP) formulations and we show that our best model could solve the problem instances optimally with up to 50 sensor nodes in less than 30 minutes. Next, we propose a heuristic idea to reduce the number of variables in implementing the 3-index model to effectively handle larger-scale networks with size in hundreds. The experiment results show that our heuristic approach significantly prolongs the network lifetime compared to existing most efficient proposals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1