采用ABC距离函数

D. Prangle
{"title":"采用ABC距离函数","authors":"D. Prangle","doi":"10.1214/16-BA1002","DOIUrl":null,"url":null,"abstract":"Approximate Bayesian computation performs approximate inference for models where likelihood computations are expensive or impossible. Instead simulations from the model are performed for various parameter values and accepted if they are close enough to the observations. There has been much progress on deciding which summary statistics of the data should be used to judge closeness, but less work on how to weight them. Typically weights are chosen at the start of the algorithm which normalise the summary statistics to vary on similar scales. However these may not be appropriate in iterative ABC algorithms, where the distribution from which the parameters are proposed is updated. This can substantially alter the resulting distribution of summary statistics, so that different weights are needed for normalisation. This paper presents two iterative ABC algorithms which adaptively update their weights and demonstrates improved results on test applications.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Adapting the ABC distance function\",\"authors\":\"D. Prangle\",\"doi\":\"10.1214/16-BA1002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate Bayesian computation performs approximate inference for models where likelihood computations are expensive or impossible. Instead simulations from the model are performed for various parameter values and accepted if they are close enough to the observations. There has been much progress on deciding which summary statistics of the data should be used to judge closeness, but less work on how to weight them. Typically weights are chosen at the start of the algorithm which normalise the summary statistics to vary on similar scales. However these may not be appropriate in iterative ABC algorithms, where the distribution from which the parameters are proposed is updated. This can substantially alter the resulting distribution of summary statistics, so that different weights are needed for normalisation. This paper presents two iterative ABC algorithms which adaptively update their weights and demonstrates improved results on test applications.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/16-BA1002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/16-BA1002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

近似贝叶斯计算对似然计算昂贵或不可能的模型进行近似推理。相反,对各种参数值进行模型模拟,如果它们与观测值足够接近,则接受模型模拟。在决定应该使用哪些数据的汇总统计数据来判断接近程度方面,已经取得了很大进展,但在如何衡量这些数据的权重方面,工作却很少。通常,权重是在算法开始时选择的,它使汇总统计数据在相似的尺度上规范化。然而,这些可能不适用于迭代ABC算法,其中提出参数的分布是更新的。这可能会极大地改变汇总统计的结果分布,因此需要不同的权重来进行规范化。本文提出了两种自适应更新权值的迭代ABC算法,并在测试应用中证明了改进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adapting the ABC distance function
Approximate Bayesian computation performs approximate inference for models where likelihood computations are expensive or impossible. Instead simulations from the model are performed for various parameter values and accepted if they are close enough to the observations. There has been much progress on deciding which summary statistics of the data should be used to judge closeness, but less work on how to weight them. Typically weights are chosen at the start of the algorithm which normalise the summary statistics to vary on similar scales. However these may not be appropriate in iterative ABC algorithms, where the distribution from which the parameters are proposed is updated. This can substantially alter the resulting distribution of summary statistics, so that different weights are needed for normalisation. This paper presents two iterative ABC algorithms which adaptively update their weights and demonstrates improved results on test applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1