{"title":"采用ABC距离函数","authors":"D. Prangle","doi":"10.1214/16-BA1002","DOIUrl":null,"url":null,"abstract":"Approximate Bayesian computation performs approximate inference for models where likelihood computations are expensive or impossible. Instead simulations from the model are performed for various parameter values and accepted if they are close enough to the observations. There has been much progress on deciding which summary statistics of the data should be used to judge closeness, but less work on how to weight them. Typically weights are chosen at the start of the algorithm which normalise the summary statistics to vary on similar scales. However these may not be appropriate in iterative ABC algorithms, where the distribution from which the parameters are proposed is updated. This can substantially alter the resulting distribution of summary statistics, so that different weights are needed for normalisation. This paper presents two iterative ABC algorithms which adaptively update their weights and demonstrates improved results on test applications.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Adapting the ABC distance function\",\"authors\":\"D. Prangle\",\"doi\":\"10.1214/16-BA1002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate Bayesian computation performs approximate inference for models where likelihood computations are expensive or impossible. Instead simulations from the model are performed for various parameter values and accepted if they are close enough to the observations. There has been much progress on deciding which summary statistics of the data should be used to judge closeness, but less work on how to weight them. Typically weights are chosen at the start of the algorithm which normalise the summary statistics to vary on similar scales. However these may not be appropriate in iterative ABC algorithms, where the distribution from which the parameters are proposed is updated. This can substantially alter the resulting distribution of summary statistics, so that different weights are needed for normalisation. This paper presents two iterative ABC algorithms which adaptively update their weights and demonstrates improved results on test applications.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/16-BA1002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/16-BA1002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximate Bayesian computation performs approximate inference for models where likelihood computations are expensive or impossible. Instead simulations from the model are performed for various parameter values and accepted if they are close enough to the observations. There has been much progress on deciding which summary statistics of the data should be used to judge closeness, but less work on how to weight them. Typically weights are chosen at the start of the algorithm which normalise the summary statistics to vary on similar scales. However these may not be appropriate in iterative ABC algorithms, where the distribution from which the parameters are proposed is updated. This can substantially alter the resulting distribution of summary statistics, so that different weights are needed for normalisation. This paper presents two iterative ABC algorithms which adaptively update their weights and demonstrates improved results on test applications.