Natalia Apanasevich, K. Lapko, Alexander N. Kudlash, A. Sokal, Yury D. Kliaulin, K. Vishnevskii
{"title":"固体磷酸镁-磷酸钙复合材料的制备与研究","authors":"Natalia Apanasevich, K. Lapko, Alexander N. Kudlash, A. Sokal, Yury D. Kliaulin, K. Vishnevskii","doi":"10.33581/2520-257x-2021-2-50-61","DOIUrl":null,"url":null,"abstract":"Thermostable composite materials based on solid magnesium phosphate and calcium phosphate, as well as hybrid calcium magnesium phosphate binders have been developed and investigated. Thermal and phase transformations of the phosphate composites have been studied. Strength characteristics of composite materials have been determined in the temperature range of 20–1000 °C. It is shown that the obtained phosphate composites have high strength properties (compressive strength reaches 120–130 MPa) and are characterised by high thermal stability in the temperature range up to 1000 °С. The low weight loss of the studied composites (no more than 10 %) and the absence of significant thermal effects indicate that they are promising for use as a thermostable matrix for obtaining functional composite materials.","PeriodicalId":17303,"journal":{"name":"Journal of the Belarusian State University. Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and study of thermostable composites based on solid magnesium phosphate and calcium phosphate binders\",\"authors\":\"Natalia Apanasevich, K. Lapko, Alexander N. Kudlash, A. Sokal, Yury D. Kliaulin, K. Vishnevskii\",\"doi\":\"10.33581/2520-257x-2021-2-50-61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermostable composite materials based on solid magnesium phosphate and calcium phosphate, as well as hybrid calcium magnesium phosphate binders have been developed and investigated. Thermal and phase transformations of the phosphate composites have been studied. Strength characteristics of composite materials have been determined in the temperature range of 20–1000 °C. It is shown that the obtained phosphate composites have high strength properties (compressive strength reaches 120–130 MPa) and are characterised by high thermal stability in the temperature range up to 1000 °С. The low weight loss of the studied composites (no more than 10 %) and the absence of significant thermal effects indicate that they are promising for use as a thermostable matrix for obtaining functional composite materials.\",\"PeriodicalId\":17303,\"journal\":{\"name\":\"Journal of the Belarusian State University. Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Belarusian State University. Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/2520-257x-2021-2-50-61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Belarusian State University. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-257x-2021-2-50-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation and study of thermostable composites based on solid magnesium phosphate and calcium phosphate binders
Thermostable composite materials based on solid magnesium phosphate and calcium phosphate, as well as hybrid calcium magnesium phosphate binders have been developed and investigated. Thermal and phase transformations of the phosphate composites have been studied. Strength characteristics of composite materials have been determined in the temperature range of 20–1000 °C. It is shown that the obtained phosphate composites have high strength properties (compressive strength reaches 120–130 MPa) and are characterised by high thermal stability in the temperature range up to 1000 °С. The low weight loss of the studied composites (no more than 10 %) and the absence of significant thermal effects indicate that they are promising for use as a thermostable matrix for obtaining functional composite materials.