RTM曲面偏移集的图像域最小二乘迁移

W. Dai, Z. Xu, X. Cheng, K. Jiao, D. Vígh
{"title":"RTM曲面偏移集的图像域最小二乘迁移","authors":"W. Dai, Z. Xu, X. Cheng, K. Jiao, D. Vígh","doi":"10.3997/2214-4609.201900827","DOIUrl":null,"url":null,"abstract":"Recent development of reverse time migration allows us to produce surface-offset gathers (SOGs) and opens the opportunity for amplitude-verse-offset analysis with a wave-equation-based migration method instead of traditional ray-based migration. We formulate an image-domain least-squares migration for surface-offset gathers to correct for limited acquisition aperture, geometric spreading, and velocity complexity. To approximate the Hessian, we start with a distribution of point scatterers in the model space, generate synthetic diffraction data with Born modelling, and migrate the data to produce corresponding point-spread functions in the form of surface-offset gathers. An image-domain inversion is then performed with these point-spread functions, as an approximate to the Hessian inverse. Numerical examples of the 3D synthetic elastic data are shown to illustrate the benefits of our method. After inversion, the SOGs clearly show consistent amplitudes to further offsets and better resolutions after compensating for acquisition aperture, geometric spreading, and velocity complexity.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image-Domain Least-Squares Migration for RTM Surface-Offset Gathers\",\"authors\":\"W. Dai, Z. Xu, X. Cheng, K. Jiao, D. Vígh\",\"doi\":\"10.3997/2214-4609.201900827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent development of reverse time migration allows us to produce surface-offset gathers (SOGs) and opens the opportunity for amplitude-verse-offset analysis with a wave-equation-based migration method instead of traditional ray-based migration. We formulate an image-domain least-squares migration for surface-offset gathers to correct for limited acquisition aperture, geometric spreading, and velocity complexity. To approximate the Hessian, we start with a distribution of point scatterers in the model space, generate synthetic diffraction data with Born modelling, and migrate the data to produce corresponding point-spread functions in the form of surface-offset gathers. An image-domain inversion is then performed with these point-spread functions, as an approximate to the Hessian inverse. Numerical examples of the 3D synthetic elastic data are shown to illustrate the benefits of our method. After inversion, the SOGs clearly show consistent amplitudes to further offsets and better resolutions after compensating for acquisition aperture, geometric spreading, and velocity complexity.\",\"PeriodicalId\":6840,\"journal\":{\"name\":\"81st EAGE Conference and Exhibition 2019\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"81st EAGE Conference and Exhibition 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201900827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

逆时偏移的最新发展使我们能够产生表面偏移集(sog),并为基于波动方程的偏移方法而不是传统的基于射线的偏移方法进行振幅反偏移分析提供了机会。我们为表面偏移集制定了图像域最小二乘迁移,以纠正有限的采集孔径,几何扩展和速度复杂性。为了近似Hessian,我们从模型空间中的点散射体分布开始,使用Born建模生成合成衍射数据,并将数据迁移到以表面偏移集的形式生成相应的点扩散函数。然后用这些点扩展函数进行图像域反演,近似于Hessian逆。通过三维合成弹性数据的数值算例说明了该方法的优越性。反演后,在补偿了采集孔径、几何扩展和速度复杂度后,SOGs的振幅明显与进一步偏移一致,分辨率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image-Domain Least-Squares Migration for RTM Surface-Offset Gathers
Recent development of reverse time migration allows us to produce surface-offset gathers (SOGs) and opens the opportunity for amplitude-verse-offset analysis with a wave-equation-based migration method instead of traditional ray-based migration. We formulate an image-domain least-squares migration for surface-offset gathers to correct for limited acquisition aperture, geometric spreading, and velocity complexity. To approximate the Hessian, we start with a distribution of point scatterers in the model space, generate synthetic diffraction data with Born modelling, and migrate the data to produce corresponding point-spread functions in the form of surface-offset gathers. An image-domain inversion is then performed with these point-spread functions, as an approximate to the Hessian inverse. Numerical examples of the 3D synthetic elastic data are shown to illustrate the benefits of our method. After inversion, the SOGs clearly show consistent amplitudes to further offsets and better resolutions after compensating for acquisition aperture, geometric spreading, and velocity complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Recurrent Architectures for Seismic Tomography UK Geoenergy Observatories: New Facilities to Understand the Future Energy Challenges A New Approach for Determining Optimum Location of Injection Wells Using an Efficient Dynamic Based Method Microseismic Magnitudes: Challenges in Determining the Correct Moment and Operating Regulatory Frameworks Machine-Learning in Oil and Gas Exploration: A New Approach to Geological Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1