智能网络架构在协同网络物理系统中的应用:经验报告

Uwe Pohlmann, H. Trsek, L. Duerkop, Stefan Dziwok, Felix Oestersotebier
{"title":"智能网络架构在协同网络物理系统中的应用:经验报告","authors":"Uwe Pohlmann, H. Trsek, L. Duerkop, Stefan Dziwok, Felix Oestersotebier","doi":"10.1109/ETFA.2014.7005358","DOIUrl":null,"url":null,"abstract":"Cooperative cyber-physical systems (CCPS) are driven by the tight coordination between computational components, physical sensors and actuators, and the interaction with each other over system bounds. The software development of CCPS is getting more complex because of the tight integration, heterogeneous technologies, as well as safety and timing requirements. Therefore, new engineering approaches, such as model-driven development methods, are required, along with communication architectures with self-* capabilities. Both will support the developer in specifying such a system effectively and efficiently. However, the application of such techniques for the development of CCPS has not been addressed sufficiently so far. This paper presents an experience report of developing a cooperative delta-robot system that juggles a ball without a central control or camera system. For the development, an intelligent network architecture and model-driven development method for CCPS are applied.","PeriodicalId":20477,"journal":{"name":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Application of an intelligent network architecture on a cooperative cyber-physical system: An experience report\",\"authors\":\"Uwe Pohlmann, H. Trsek, L. Duerkop, Stefan Dziwok, Felix Oestersotebier\",\"doi\":\"10.1109/ETFA.2014.7005358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative cyber-physical systems (CCPS) are driven by the tight coordination between computational components, physical sensors and actuators, and the interaction with each other over system bounds. The software development of CCPS is getting more complex because of the tight integration, heterogeneous technologies, as well as safety and timing requirements. Therefore, new engineering approaches, such as model-driven development methods, are required, along with communication architectures with self-* capabilities. Both will support the developer in specifying such a system effectively and efficiently. However, the application of such techniques for the development of CCPS has not been addressed sufficiently so far. This paper presents an experience report of developing a cooperative delta-robot system that juggles a ball without a central control or camera system. For the development, an intelligent network architecture and model-driven development method for CCPS are applied.\",\"PeriodicalId\":20477,\"journal\":{\"name\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2014.7005358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2014.7005358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

协同网络物理系统(CCPS)是由计算组件、物理传感器和执行器之间的紧密协调以及系统边界上的相互作用驱动的。CCPS的软件开发由于集成度高、技术异构性强、安全性和时序要求高而变得越来越复杂。因此,需要新的工程方法,例如模型驱动的开发方法,以及具有自功能的通信体系结构。两者都将支持开发人员有效和高效地指定这样的系统。然而,到目前为止,这些技术在CCPS开发中的应用还没有得到充分的解决。本文介绍了一种无中央控制系统和无摄像系统的协作式三角机器人杂耍球系统的开发经验。在开发过程中,采用了智能网络架构和模型驱动的CCPS开发方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of an intelligent network architecture on a cooperative cyber-physical system: An experience report
Cooperative cyber-physical systems (CCPS) are driven by the tight coordination between computational components, physical sensors and actuators, and the interaction with each other over system bounds. The software development of CCPS is getting more complex because of the tight integration, heterogeneous technologies, as well as safety and timing requirements. Therefore, new engineering approaches, such as model-driven development methods, are required, along with communication architectures with self-* capabilities. Both will support the developer in specifying such a system effectively and efficiently. However, the application of such techniques for the development of CCPS has not been addressed sufficiently so far. This paper presents an experience report of developing a cooperative delta-robot system that juggles a ball without a central control or camera system. For the development, an intelligent network architecture and model-driven development method for CCPS are applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Competitors or Cousins? Studying the parallels between distributed programming languages SystemJ and IEC61499 A scalable approach for re-configuring evolving industrial control systems Arrowhead compliant virtual market of energy Security vulnerabilities and risks in industrial usage of wireless communication Managing temporal allocation in Integrated Modular Avionics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1