M. Bonini, M. Mete, T. Nguyen, Augusto Urru, W. Echelmeyer
{"title":"STIC分析:自动化投资的决策支持方法","authors":"M. Bonini, M. Mete, T. Nguyen, Augusto Urru, W. Echelmeyer","doi":"10.1109/IEEM50564.2021.9672880","DOIUrl":null,"url":null,"abstract":"Compared to the automotive sector, where automation is the rule, in many other less standardized sectors automation is still the exception. This could soon hurt the productivity of industrialized countries, where the unemployment is low and the population is aging. Phenomena like the recent downfall in productivity, due to lockdowns and social distancing for prevention of health hazards during the COVID19 pandemic, only add to the problem. For these reasons, the relevance, motivation and intention for more automation in less standardized sectors has probably never been higher. However, available statistics say that providers and users of technologies struggle to bring more automation into action in automation-unfriendly sectors. In this paper, we present a decision support method for investment in automation that tackles the problem: the STIC analysis. The method takes a holistic and quantitative approach tying together technological, context-related and economic input parameters and synthetizing them in a final economic indicator. Thanks to the modelling of such parameters, it is possible to gain sensibility on the technological and/or process adjustments that would have the highest impact on the efficiency of the automation, thereby delivering value for both technology users and technology providers.","PeriodicalId":6818,"journal":{"name":"2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"86 1","pages":"427-434"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The STIC Analysis: A Decision Support Method for Investments in Automation\",\"authors\":\"M. Bonini, M. Mete, T. Nguyen, Augusto Urru, W. Echelmeyer\",\"doi\":\"10.1109/IEEM50564.2021.9672880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to the automotive sector, where automation is the rule, in many other less standardized sectors automation is still the exception. This could soon hurt the productivity of industrialized countries, where the unemployment is low and the population is aging. Phenomena like the recent downfall in productivity, due to lockdowns and social distancing for prevention of health hazards during the COVID19 pandemic, only add to the problem. For these reasons, the relevance, motivation and intention for more automation in less standardized sectors has probably never been higher. However, available statistics say that providers and users of technologies struggle to bring more automation into action in automation-unfriendly sectors. In this paper, we present a decision support method for investment in automation that tackles the problem: the STIC analysis. The method takes a holistic and quantitative approach tying together technological, context-related and economic input parameters and synthetizing them in a final economic indicator. Thanks to the modelling of such parameters, it is possible to gain sensibility on the technological and/or process adjustments that would have the highest impact on the efficiency of the automation, thereby delivering value for both technology users and technology providers.\",\"PeriodicalId\":6818,\"journal\":{\"name\":\"2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"volume\":\"86 1\",\"pages\":\"427-434\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEM50564.2021.9672880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM50564.2021.9672880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The STIC Analysis: A Decision Support Method for Investments in Automation
Compared to the automotive sector, where automation is the rule, in many other less standardized sectors automation is still the exception. This could soon hurt the productivity of industrialized countries, where the unemployment is low and the population is aging. Phenomena like the recent downfall in productivity, due to lockdowns and social distancing for prevention of health hazards during the COVID19 pandemic, only add to the problem. For these reasons, the relevance, motivation and intention for more automation in less standardized sectors has probably never been higher. However, available statistics say that providers and users of technologies struggle to bring more automation into action in automation-unfriendly sectors. In this paper, we present a decision support method for investment in automation that tackles the problem: the STIC analysis. The method takes a holistic and quantitative approach tying together technological, context-related and economic input parameters and synthetizing them in a final economic indicator. Thanks to the modelling of such parameters, it is possible to gain sensibility on the technological and/or process adjustments that would have the highest impact on the efficiency of the automation, thereby delivering value for both technology users and technology providers.