{"title":"高维时间序列块相关矩阵特征值分布的渐近性","authors":"P. Loubaton, X. Mestre","doi":"10.1142/s2010326322500241","DOIUrl":null,"url":null,"abstract":"We consider linear spectral statistics built from the block-normalized correlation matrix of a set of [Formula: see text] mutually independent scalar time series. This matrix is composed of [Formula: see text] blocks. Each block has size [Formula: see text] and contains the sample cross-correlation measured at [Formula: see text] consecutive time lags between each pair of time series. Let [Formula: see text] denote the total number of consecutively observed windows that are used to estimate these correlation matrices. We analyze the asymptotic regime where [Formula: see text] while [Formula: see text], [Formula: see text]. We study the behavior of linear statistics of the eigenvalues of this block correlation matrix under these asymptotic conditions and show that the empirical eigenvalue distribution converges to a Marcenko–Pastur distribution. Our results are potentially useful in order to address the problem of testing whether a large number of time series are uncorrelated or not.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"100 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the asymptotic behavior of the eigenvalue distribution of block correlation matrices of high-dimensional time series\",\"authors\":\"P. Loubaton, X. Mestre\",\"doi\":\"10.1142/s2010326322500241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider linear spectral statistics built from the block-normalized correlation matrix of a set of [Formula: see text] mutually independent scalar time series. This matrix is composed of [Formula: see text] blocks. Each block has size [Formula: see text] and contains the sample cross-correlation measured at [Formula: see text] consecutive time lags between each pair of time series. Let [Formula: see text] denote the total number of consecutively observed windows that are used to estimate these correlation matrices. We analyze the asymptotic regime where [Formula: see text] while [Formula: see text], [Formula: see text]. We study the behavior of linear statistics of the eigenvalues of this block correlation matrix under these asymptotic conditions and show that the empirical eigenvalue distribution converges to a Marcenko–Pastur distribution. Our results are potentially useful in order to address the problem of testing whether a large number of time series are uncorrelated or not.\",\"PeriodicalId\":54329,\"journal\":{\"name\":\"Random Matrices-Theory and Applications\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Matrices-Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500241\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500241","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On the asymptotic behavior of the eigenvalue distribution of block correlation matrices of high-dimensional time series
We consider linear spectral statistics built from the block-normalized correlation matrix of a set of [Formula: see text] mutually independent scalar time series. This matrix is composed of [Formula: see text] blocks. Each block has size [Formula: see text] and contains the sample cross-correlation measured at [Formula: see text] consecutive time lags between each pair of time series. Let [Formula: see text] denote the total number of consecutively observed windows that are used to estimate these correlation matrices. We analyze the asymptotic regime where [Formula: see text] while [Formula: see text], [Formula: see text]. We study the behavior of linear statistics of the eigenvalues of this block correlation matrix under these asymptotic conditions and show that the empirical eigenvalue distribution converges to a Marcenko–Pastur distribution. Our results are potentially useful in order to address the problem of testing whether a large number of time series are uncorrelated or not.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.