Yuanhan Tang, J.-F. Ding, Xun Zhou, Xintao Ma, Yi Zhao, Qiyu Mu, Zixu Huang, Q. Tao, Fangjie Liu, Ling Wang
{"title":"酶催化交联酪胺修饰明胶的可注射水凝胶","authors":"Yuanhan Tang, J.-F. Ding, Xun Zhou, Xintao Ma, Yi Zhao, Qiyu Mu, Zixu Huang, Q. Tao, Fangjie Liu, Ling Wang","doi":"10.1071/ch22188","DOIUrl":null,"url":null,"abstract":"Enzymatically catalyzed cross-linking is a hydrogel fabrication method that generally is considered to have lower cytotoxicity than traditional chemical cross-linking methods. In order to optimize the properties of injectable hydrogels and expand their applications, an enzyme-catalyzed cross-linked injectable hydrogel was designed. The tyramine-modified gelatin (G-T) was formed into a stable injectable hydrogel by the combination of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) catalysis. 1H NMR spectroscopy was used to demonstrate the successful modification of gelatin by tyramine. The surface morphology of the prepared hydrogels was characterized jointly by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Rheological tests demonstrated the tunable mechanical strength, formation kinetics, shear thinning and good self-recovery properties of the hydrogels. In addition, the hydrogels can be formed into various shapes by injection. The hydrogel network structure is complex and interlaced, as such it is suitable to encapsulate drugs for controlled release. The drug release from the prepared hydrogels followed the Peppas–Sahlin model and belonged to Fickian diffusion. This study constructed injectable hydrogels through the enzyme-catalyzed cross-linking of modified gelatin and applied the hydrogels for drug release, which is expected to expand the application in biomedical fields.","PeriodicalId":8575,"journal":{"name":"Australian Journal of Chemistry","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Injectable hydrogels of enzyme-catalyzed cross-linked tyramine-modified gelatin for drug delivery\",\"authors\":\"Yuanhan Tang, J.-F. Ding, Xun Zhou, Xintao Ma, Yi Zhao, Qiyu Mu, Zixu Huang, Q. Tao, Fangjie Liu, Ling Wang\",\"doi\":\"10.1071/ch22188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enzymatically catalyzed cross-linking is a hydrogel fabrication method that generally is considered to have lower cytotoxicity than traditional chemical cross-linking methods. In order to optimize the properties of injectable hydrogels and expand their applications, an enzyme-catalyzed cross-linked injectable hydrogel was designed. The tyramine-modified gelatin (G-T) was formed into a stable injectable hydrogel by the combination of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) catalysis. 1H NMR spectroscopy was used to demonstrate the successful modification of gelatin by tyramine. The surface morphology of the prepared hydrogels was characterized jointly by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Rheological tests demonstrated the tunable mechanical strength, formation kinetics, shear thinning and good self-recovery properties of the hydrogels. In addition, the hydrogels can be formed into various shapes by injection. The hydrogel network structure is complex and interlaced, as such it is suitable to encapsulate drugs for controlled release. The drug release from the prepared hydrogels followed the Peppas–Sahlin model and belonged to Fickian diffusion. This study constructed injectable hydrogels through the enzyme-catalyzed cross-linking of modified gelatin and applied the hydrogels for drug release, which is expected to expand the application in biomedical fields.\",\"PeriodicalId\":8575,\"journal\":{\"name\":\"Australian Journal of Chemistry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1071/ch22188\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1071/ch22188","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Injectable hydrogels of enzyme-catalyzed cross-linked tyramine-modified gelatin for drug delivery
Enzymatically catalyzed cross-linking is a hydrogel fabrication method that generally is considered to have lower cytotoxicity than traditional chemical cross-linking methods. In order to optimize the properties of injectable hydrogels and expand their applications, an enzyme-catalyzed cross-linked injectable hydrogel was designed. The tyramine-modified gelatin (G-T) was formed into a stable injectable hydrogel by the combination of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) catalysis. 1H NMR spectroscopy was used to demonstrate the successful modification of gelatin by tyramine. The surface morphology of the prepared hydrogels was characterized jointly by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Rheological tests demonstrated the tunable mechanical strength, formation kinetics, shear thinning and good self-recovery properties of the hydrogels. In addition, the hydrogels can be formed into various shapes by injection. The hydrogel network structure is complex and interlaced, as such it is suitable to encapsulate drugs for controlled release. The drug release from the prepared hydrogels followed the Peppas–Sahlin model and belonged to Fickian diffusion. This study constructed injectable hydrogels through the enzyme-catalyzed cross-linking of modified gelatin and applied the hydrogels for drug release, which is expected to expand the application in biomedical fields.
期刊介绍:
Australian Journal of Chemistry - an International Journal for Chemical Science publishes research papers from all fields of chemical science. Papers that are multidisciplinary or address new or emerging areas of chemistry are particularly encouraged. Thus, the scope is dynamic. It includes (but is not limited to) synthesis, structure, new materials, macromolecules and polymers, supramolecular chemistry, analytical and environmental chemistry, natural products, biological and medicinal chemistry, nanotechnology, and surface chemistry.
Australian Journal of Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.