网络物理建筑环境中机器学习模型的趋势:一项调查

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery Pub Date : 2021-06-29 DOI:10.1002/widm.1422
Zahid Hasan, Nirmalya Roy
{"title":"网络物理建筑环境中机器学习模型的趋势:一项调查","authors":"Zahid Hasan, Nirmalya Roy","doi":"10.1002/widm.1422","DOIUrl":null,"url":null,"abstract":"Electricity usage of buildings (including offices, malls, and residential apartments) represents a significant portion of a nation's energy expenditure and carbon footprint. In the United States, the buildings' appliances consume 72% of the total produced electricity approximately. In this regard, cyber‐physical system (CPS) researchers have put forth associated research questions to reduce cyber‐physical building environment energy consumption by minimizing the energy dissipation while securing occupants' comfort. Some of the questions in CPS building include finding the optimal HVAC control, monitoring appliances' energy usage, detecting insulation problems, estimating the occupants' number and activities, managing thermal comfort, intelligently interacting with the smart grid. Various machine learning (ML) applications have been studied in recent CPS researches to improve building energy efficiency by addressing these questions. In this paper, we comprehensively review and report on the contemporary applications of ML algorithms such as deep learning, transfer learning, active learning, reinforcement learning, and other emerging techniques that propose and envision to address the above challenges in the CPS building environment. Finally, we conclude this article by discussing diverse existing open questions and prospective future directions in the CPS building environment research.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"729 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Trending machine learning models in cyber‐physical building environment: A survey\",\"authors\":\"Zahid Hasan, Nirmalya Roy\",\"doi\":\"10.1002/widm.1422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity usage of buildings (including offices, malls, and residential apartments) represents a significant portion of a nation's energy expenditure and carbon footprint. In the United States, the buildings' appliances consume 72% of the total produced electricity approximately. In this regard, cyber‐physical system (CPS) researchers have put forth associated research questions to reduce cyber‐physical building environment energy consumption by minimizing the energy dissipation while securing occupants' comfort. Some of the questions in CPS building include finding the optimal HVAC control, monitoring appliances' energy usage, detecting insulation problems, estimating the occupants' number and activities, managing thermal comfort, intelligently interacting with the smart grid. Various machine learning (ML) applications have been studied in recent CPS researches to improve building energy efficiency by addressing these questions. In this paper, we comprehensively review and report on the contemporary applications of ML algorithms such as deep learning, transfer learning, active learning, reinforcement learning, and other emerging techniques that propose and envision to address the above challenges in the CPS building environment. Finally, we conclude this article by discussing diverse existing open questions and prospective future directions in the CPS building environment research.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"729 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1422\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1422","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9

摘要

建筑物(包括办公室、商场和住宅公寓)的用电量占一个国家能源支出和碳足迹的很大一部分。在美国,建筑物的电器消耗了大约72%的总发电量。在这方面,网络物理系统(CPS)的研究人员提出了相关的研究问题,以减少网络物理建筑环境的能源消耗,同时确保居住者的舒适。CPS建筑中的一些问题包括找到最佳的HVAC控制,监控设备的能源使用,检测绝缘问题,估计居住者的数量和活动,管理热舒适,与智能电网智能交互。在最近的CPS研究中,研究了各种机器学习(ML)应用,通过解决这些问题来提高建筑能源效率。在本文中,我们全面回顾和报告了机器学习算法的当代应用,如深度学习、迁移学习、主动学习、强化学习和其他新兴技术,这些技术提出并设想了在CPS建筑环境中解决上述挑战的方法。最后,我们讨论了CPS建筑环境研究中存在的各种问题和未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trending machine learning models in cyber‐physical building environment: A survey
Electricity usage of buildings (including offices, malls, and residential apartments) represents a significant portion of a nation's energy expenditure and carbon footprint. In the United States, the buildings' appliances consume 72% of the total produced electricity approximately. In this regard, cyber‐physical system (CPS) researchers have put forth associated research questions to reduce cyber‐physical building environment energy consumption by minimizing the energy dissipation while securing occupants' comfort. Some of the questions in CPS building include finding the optimal HVAC control, monitoring appliances' energy usage, detecting insulation problems, estimating the occupants' number and activities, managing thermal comfort, intelligently interacting with the smart grid. Various machine learning (ML) applications have been studied in recent CPS researches to improve building energy efficiency by addressing these questions. In this paper, we comprehensively review and report on the contemporary applications of ML algorithms such as deep learning, transfer learning, active learning, reinforcement learning, and other emerging techniques that propose and envision to address the above challenges in the CPS building environment. Finally, we conclude this article by discussing diverse existing open questions and prospective future directions in the CPS building environment research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
期刊最新文献
Research on mining software repositories to facilitate refactoring Use of artificial intelligence algorithms to predict systemic diseases from retinal images The benefits and dangers of using machine learning to support making legal predictions Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective ExplainFix: Explainable spatially fixed deep networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1