{"title":"蓝宝石晶体边缘定义、薄膜供给生长的生长速率计算","authors":"F. Bruni","doi":"10.1002/crat.202000244","DOIUrl":null,"url":null,"abstract":"A new model for the calculation of the growth rate of edge‐defined, film‐fed growth (EFG) crystals is proposed based on surface tension proportional to the area of the crystal/die interface. A comparison to the classical model, which includes a surface tension factor proportional to the length of the crystal's peripheral edge, is shown. Equations are derived that accurately predict the growth rate derived from weight versus time calculations. Examples are shown for various geometries of crystal shape.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"285 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Growth Rate Calculations for Edge‐Defined, Film‐Fed Growth of Sapphire Crystals\",\"authors\":\"F. Bruni\",\"doi\":\"10.1002/crat.202000244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new model for the calculation of the growth rate of edge‐defined, film‐fed growth (EFG) crystals is proposed based on surface tension proportional to the area of the crystal/die interface. A comparison to the classical model, which includes a surface tension factor proportional to the length of the crystal's peripheral edge, is shown. Equations are derived that accurately predict the growth rate derived from weight versus time calculations. Examples are shown for various geometries of crystal shape.\",\"PeriodicalId\":10797,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"285 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/crat.202000244\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202000244","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Growth Rate Calculations for Edge‐Defined, Film‐Fed Growth of Sapphire Crystals
A new model for the calculation of the growth rate of edge‐defined, film‐fed growth (EFG) crystals is proposed based on surface tension proportional to the area of the crystal/die interface. A comparison to the classical model, which includes a surface tension factor proportional to the length of the crystal's peripheral edge, is shown. Equations are derived that accurately predict the growth rate derived from weight versus time calculations. Examples are shown for various geometries of crystal shape.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing