氮化碳中的层间 Zn-N4 配置提高了表面电荷密度,从而增强了二氧化碳光生化能力

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2023-09-07 DOI:10.1007/s12274-023-6079-y
Xianjin Shi, Yu Huang, Gangqiang Zhu, Wei Peng, Meijuan Chen
{"title":"氮化碳中的层间 Zn-N4 配置提高了表面电荷密度,从而增强了二氧化碳光生化能力","authors":"Xianjin Shi,&nbsp;Yu Huang,&nbsp;Gangqiang Zhu,&nbsp;Wei Peng,&nbsp;Meijuan Chen","doi":"10.1007/s12274-023-6079-y","DOIUrl":null,"url":null,"abstract":"<div><p>The solar-driven reduction of CO<sub>2</sub> into valuable products is a promising method to alleviate global environmental problems and energy crises. However, the low surface charge density limits the photocatalytic conversion performance of CO<sub>2</sub>. Herein, a polymeric carbon nitride (PCN) photocatalyst with Zn single atoms (Zn<sub>1</sub>/CN) was designed and synthesized for CO<sub>2</sub> photoreduction. The results of the CO<sub>2</sub> photoreduction studies show that the CO and CH<sub>4</sub> yields of Zn<sub>1</sub>/CN increased fivefold, reaching 76.9 and 22.9 µmol/(g·h), respectively, in contrast to the unmodified PCN. Ar<sup>+</sup> plasma-etched X-ray photoelectron spectroscopy and synchrotron radiation-based X-ray absorption fine structure results reveal that Zn single atom is mainly present in the interlayer space of PCN in the Zn–N<sub>4</sub> configuration. Photoelectrochemical characterizations indicate that the interlayer Zn–N<sub>4</sub> configuration can amplify light absorption and establish an interlayer charge transfer channel. Light-assisted Kelvin probe force microscopy confirms that more photogenerated electrons are delivered to the catalyst surface through interlayer Zn–N<sub>4</sub> configuration, which increases its surface charge density. Further, <i>in-situ</i> infrared spectroscopy combined with density functional theory calculation reveals that promoted surface charge density accelerates key intermediates (⋆COOH) conversion, thus achieving efficient CO<sub>2</sub> conversion. This work elucidates the role of internal single atoms in catalytic surface reactions, which provides important implications for the design of single-atom catalysts.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 4","pages":"2400 - 2409"},"PeriodicalIF":9.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoted surface charge density from interlayer Zn–N4 configuration in carbon nitride for enhanced CO2 photoreduction\",\"authors\":\"Xianjin Shi,&nbsp;Yu Huang,&nbsp;Gangqiang Zhu,&nbsp;Wei Peng,&nbsp;Meijuan Chen\",\"doi\":\"10.1007/s12274-023-6079-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solar-driven reduction of CO<sub>2</sub> into valuable products is a promising method to alleviate global environmental problems and energy crises. However, the low surface charge density limits the photocatalytic conversion performance of CO<sub>2</sub>. Herein, a polymeric carbon nitride (PCN) photocatalyst with Zn single atoms (Zn<sub>1</sub>/CN) was designed and synthesized for CO<sub>2</sub> photoreduction. The results of the CO<sub>2</sub> photoreduction studies show that the CO and CH<sub>4</sub> yields of Zn<sub>1</sub>/CN increased fivefold, reaching 76.9 and 22.9 µmol/(g·h), respectively, in contrast to the unmodified PCN. Ar<sup>+</sup> plasma-etched X-ray photoelectron spectroscopy and synchrotron radiation-based X-ray absorption fine structure results reveal that Zn single atom is mainly present in the interlayer space of PCN in the Zn–N<sub>4</sub> configuration. Photoelectrochemical characterizations indicate that the interlayer Zn–N<sub>4</sub> configuration can amplify light absorption and establish an interlayer charge transfer channel. Light-assisted Kelvin probe force microscopy confirms that more photogenerated electrons are delivered to the catalyst surface through interlayer Zn–N<sub>4</sub> configuration, which increases its surface charge density. Further, <i>in-situ</i> infrared spectroscopy combined with density functional theory calculation reveals that promoted surface charge density accelerates key intermediates (⋆COOH) conversion, thus achieving efficient CO<sub>2</sub> conversion. This work elucidates the role of internal single atoms in catalytic surface reactions, which provides important implications for the design of single-atom catalysts.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 4\",\"pages\":\"2400 - 2409\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-023-6079-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-023-6079-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用太阳能将二氧化碳还原成有价值的产品,是一种有望缓解全球环境问题和能源危机的方法。然而,低表面电荷密度限制了二氧化碳的光催化转化性能。在此,我们设计并合成了一种含有单原子 Zn(Zn1/CN)的聚合氮化碳(PCN)光催化剂,用于 CO2 光催化。二氧化碳光还原研究结果表明,与未改性的 PCN 相比,Zn1/CN 的 CO 和 CH4 产率提高了五倍,分别达到 76.9 和 22.9 µmol/(g-h)。Ar+ 等离子刻蚀 X 射线光电子能谱和基于同步辐射的 X 射线吸收精细结构结果表明,Zn 单原子主要以 Zn-N4 构型存在于 PCN 的层间空间。光电化学特性分析表明,层间 Zn-N4 构型可以放大光吸收并建立层间电荷转移通道。光辅助开尔文探针力显微镜证实,更多的光生电子通过层间 Zn-N4 构型传递到催化剂表面,从而增加了催化剂的表面电荷密度。此外,原位红外光谱和密度泛函理论计算显示,表面电荷密度的提高加速了关键中间产物(⋆COOH)的转化,从而实现了二氧化碳的高效转化。这项工作阐明了内部单原子在催化表面反应中的作用,为单原子催化剂的设计提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Promoted surface charge density from interlayer Zn–N4 configuration in carbon nitride for enhanced CO2 photoreduction

The solar-driven reduction of CO2 into valuable products is a promising method to alleviate global environmental problems and energy crises. However, the low surface charge density limits the photocatalytic conversion performance of CO2. Herein, a polymeric carbon nitride (PCN) photocatalyst with Zn single atoms (Zn1/CN) was designed and synthesized for CO2 photoreduction. The results of the CO2 photoreduction studies show that the CO and CH4 yields of Zn1/CN increased fivefold, reaching 76.9 and 22.9 µmol/(g·h), respectively, in contrast to the unmodified PCN. Ar+ plasma-etched X-ray photoelectron spectroscopy and synchrotron radiation-based X-ray absorption fine structure results reveal that Zn single atom is mainly present in the interlayer space of PCN in the Zn–N4 configuration. Photoelectrochemical characterizations indicate that the interlayer Zn–N4 configuration can amplify light absorption and establish an interlayer charge transfer channel. Light-assisted Kelvin probe force microscopy confirms that more photogenerated electrons are delivered to the catalyst surface through interlayer Zn–N4 configuration, which increases its surface charge density. Further, in-situ infrared spectroscopy combined with density functional theory calculation reveals that promoted surface charge density accelerates key intermediates (⋆COOH) conversion, thus achieving efficient CO2 conversion. This work elucidates the role of internal single atoms in catalytic surface reactions, which provides important implications for the design of single-atom catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1