{"title":"一种支持在非常嘈杂的数据集中发现小簇的子空间过滤器","authors":"F. Höppner","doi":"10.1145/2618243.2618260","DOIUrl":null,"url":null,"abstract":"Feature selection becomes crucial when exploring high-dimensional datasets via clustering, because it is unlikely that the data groups jointly in all dimensions but clustering algorithms treat all attributes equally. A new subspace filter approach is presented that is capable of coping with the difficult situation of finding small clusters embedded in a very noisy environment (more noise than clustering data), which is not mislead by dense, high-dimensional spots caused by density fluctuations of single attributes. Experimental evaluation on artificial and real datasets demonstrate good performance and high efficiency.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"299 1","pages":"14:1-14:12"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A subspace filter supporting the discovery of small clusters in very noisy datasets\",\"authors\":\"F. Höppner\",\"doi\":\"10.1145/2618243.2618260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection becomes crucial when exploring high-dimensional datasets via clustering, because it is unlikely that the data groups jointly in all dimensions but clustering algorithms treat all attributes equally. A new subspace filter approach is presented that is capable of coping with the difficult situation of finding small clusters embedded in a very noisy environment (more noise than clustering data), which is not mislead by dense, high-dimensional spots caused by density fluctuations of single attributes. Experimental evaluation on artificial and real datasets demonstrate good performance and high efficiency.\",\"PeriodicalId\":74773,\"journal\":{\"name\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"volume\":\"299 1\",\"pages\":\"14:1-14:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2618243.2618260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当通过聚类探索高维数据集时,特征选择变得至关重要,因为数据不可能在所有维度上共同分组,但聚类算法平等地对待所有属性。提出了一种新的子空间滤波方法,该方法能够解决在非常嘈杂的环境(比聚类数据更嘈杂)中寻找嵌入的小簇的困难情况,该环境不会被单个属性密度波动引起的密集高维斑点所误导。在人工数据集和真实数据集上的实验评估表明,该方法具有良好的性能和高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A subspace filter supporting the discovery of small clusters in very noisy datasets
Feature selection becomes crucial when exploring high-dimensional datasets via clustering, because it is unlikely that the data groups jointly in all dimensions but clustering algorithms treat all attributes equally. A new subspace filter approach is presented that is capable of coping with the difficult situation of finding small clusters embedded in a very noisy environment (more noise than clustering data), which is not mislead by dense, high-dimensional spots caused by density fluctuations of single attributes. Experimental evaluation on artificial and real datasets demonstrate good performance and high efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1