{"title":"基于联合边界语义感知的多类零件解析","authors":"Yifan Zhao, Jia Li, Yu Zhang, Yonghong Tian","doi":"10.1109/ICCV.2019.00927","DOIUrl":null,"url":null,"abstract":"Object part parsing in the wild, which requires to simultaneously detect multiple object classes in the scene and accurately segments semantic parts within each class, is challenging for the joint presence of class-level and part-level ambiguities. Despite its importance, however, this problem is not sufficiently explored in existing works. In this paper, we propose a joint parsing framework with boundary and semantic awareness to address this challenging problem. To handle part-level ambiguity, a boundary awareness module is proposed to make mid-level features at multiple scales attend to part boundaries for accurate part localization, which are then fused with high-level features for effective part recognition. For class-level ambiguity, we further present a semantic awareness module that selects discriminative part features relevant to a category to prevent irrelevant features being merged together. The proposed modules are lightweight and implementation friendly, improving the performance substantially when plugged into various baseline architectures. Without bells and whistles, the full model sets new state-of-the-art results on the Pascal-Part dataset, in both multi-class and the conventional single-class setting, while running substantially faster than recent high-performance approaches.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"2 1","pages":"9176-9185"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Multi-Class Part Parsing With Joint Boundary-Semantic Awareness\",\"authors\":\"Yifan Zhao, Jia Li, Yu Zhang, Yonghong Tian\",\"doi\":\"10.1109/ICCV.2019.00927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object part parsing in the wild, which requires to simultaneously detect multiple object classes in the scene and accurately segments semantic parts within each class, is challenging for the joint presence of class-level and part-level ambiguities. Despite its importance, however, this problem is not sufficiently explored in existing works. In this paper, we propose a joint parsing framework with boundary and semantic awareness to address this challenging problem. To handle part-level ambiguity, a boundary awareness module is proposed to make mid-level features at multiple scales attend to part boundaries for accurate part localization, which are then fused with high-level features for effective part recognition. For class-level ambiguity, we further present a semantic awareness module that selects discriminative part features relevant to a category to prevent irrelevant features being merged together. The proposed modules are lightweight and implementation friendly, improving the performance substantially when plugged into various baseline architectures. Without bells and whistles, the full model sets new state-of-the-art results on the Pascal-Part dataset, in both multi-class and the conventional single-class setting, while running substantially faster than recent high-performance approaches.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"2 1\",\"pages\":\"9176-9185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Class Part Parsing With Joint Boundary-Semantic Awareness
Object part parsing in the wild, which requires to simultaneously detect multiple object classes in the scene and accurately segments semantic parts within each class, is challenging for the joint presence of class-level and part-level ambiguities. Despite its importance, however, this problem is not sufficiently explored in existing works. In this paper, we propose a joint parsing framework with boundary and semantic awareness to address this challenging problem. To handle part-level ambiguity, a boundary awareness module is proposed to make mid-level features at multiple scales attend to part boundaries for accurate part localization, which are then fused with high-level features for effective part recognition. For class-level ambiguity, we further present a semantic awareness module that selects discriminative part features relevant to a category to prevent irrelevant features being merged together. The proposed modules are lightweight and implementation friendly, improving the performance substantially when plugged into various baseline architectures. Without bells and whistles, the full model sets new state-of-the-art results on the Pascal-Part dataset, in both multi-class and the conventional single-class setting, while running substantially faster than recent high-performance approaches.