锆掺杂对β-NiAl单晶氧化的影响

S. Uran
{"title":"锆掺杂对β-NiAl单晶氧化的影响","authors":"S. Uran","doi":"10.4172/2169-0022.1000424","DOIUrl":null,"url":null,"abstract":"Relatively new optical techniques are utilized to study the oxidation of low-index crystal faces of a zirconium doped single crystal β-NiAl. With these non-destructive techniques residual stress, phase composition and thickness of the scales were determined at various temperatures. The results are compared with the results obtained from an undoped counterpart. Interesting differences in scale stress, thickness and phase composition have been observed. The residual stress evolves rather differently than that on the undoped counterpart. Initial lower stress levels in the doped crystal convert to higher stresses at higher oxidation temperatures. The orientation dependence and a stress anomaly observed with the undoped single crystal β-NiAl are still present on the doped sample. Fluorescence and Raman results indicate a higher concentration of θ-Al2O3 on all crystallographic phases with Zr doping. The oxide scales are also thinner on the Zr doped specimen.","PeriodicalId":16326,"journal":{"name":"Journal of Material Sciences & Engineering","volume":"43 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Zirconium Doping on Oxidation of Single Crystal β-NiAl\",\"authors\":\"S. Uran\",\"doi\":\"10.4172/2169-0022.1000424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relatively new optical techniques are utilized to study the oxidation of low-index crystal faces of a zirconium doped single crystal β-NiAl. With these non-destructive techniques residual stress, phase composition and thickness of the scales were determined at various temperatures. The results are compared with the results obtained from an undoped counterpart. Interesting differences in scale stress, thickness and phase composition have been observed. The residual stress evolves rather differently than that on the undoped counterpart. Initial lower stress levels in the doped crystal convert to higher stresses at higher oxidation temperatures. The orientation dependence and a stress anomaly observed with the undoped single crystal β-NiAl are still present on the doped sample. Fluorescence and Raman results indicate a higher concentration of θ-Al2O3 on all crystallographic phases with Zr doping. The oxide scales are also thinner on the Zr doped specimen.\",\"PeriodicalId\":16326,\"journal\":{\"name\":\"Journal of Material Sciences & Engineering\",\"volume\":\"43 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2169-0022.1000424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2169-0022.1000424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用较新的光学技术研究了掺杂锆单晶β-NiAl低折射率晶面的氧化过程。利用这些非破坏性技术测定了不同温度下的残余应力、相组成和鳞片厚度。将所得结果与未掺杂对应物所得结果进行了比较。在尺度应力、厚度和相组成方面观察到有趣的差异。残余应力的演变与未掺杂的对应物不同。在较高的氧化温度下,掺杂晶体中初始较低的应力水平转化为较高的应力。未掺杂的β-NiAl单晶的取向依赖性和应力异常仍然存在于掺杂样品上。荧光和拉曼结果表明,掺杂Zr后,各晶相上的θ-Al2O3浓度较高。Zr掺杂样品上的氧化层也更薄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Zirconium Doping on Oxidation of Single Crystal β-NiAl
Relatively new optical techniques are utilized to study the oxidation of low-index crystal faces of a zirconium doped single crystal β-NiAl. With these non-destructive techniques residual stress, phase composition and thickness of the scales were determined at various temperatures. The results are compared with the results obtained from an undoped counterpart. Interesting differences in scale stress, thickness and phase composition have been observed. The residual stress evolves rather differently than that on the undoped counterpart. Initial lower stress levels in the doped crystal convert to higher stresses at higher oxidation temperatures. The orientation dependence and a stress anomaly observed with the undoped single crystal β-NiAl are still present on the doped sample. Fluorescence and Raman results indicate a higher concentration of θ-Al2O3 on all crystallographic phases with Zr doping. The oxide scales are also thinner on the Zr doped specimen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elements of Antigen Introducing Cells can be Adjusted by GoldNanoparticles Presentation: A Review Article Editorial Note for Journal of Material Sciences and Engineering Market Analysis on Biomaterials, Cellular and Tissue Engineering Good Governance in Oromia: Challenges and Strategies (Major Cities in Arsi and East Shewa zone in focus, Ethiopia) Pico/Nano/Micro Drop Dispensing Platform Using Unique DisposableCartridges for Non-Contact & no Cross Contamination Dispensing in LifeSciences and Industry: A Review Article
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1