动态硬肩综合变速限制对运行和安全的影响

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2023-11-02 DOI:10.1080/15472450.2022.2078664
Karan Arora , Lina Kattan
{"title":"动态硬肩综合变速限制对运行和安全的影响","authors":"Karan Arora ,&nbsp;Lina Kattan","doi":"10.1080/15472450.2022.2078664","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of various Intelligent Transportation System (ITS) strategies generally has manifold effects, much greater than when strategies are implemented individually. This research introduces a novel dynamic control strategy, which includes the dynamic use of a Model Predictive Control (MPC) based Variable Speed Limit (VSL) integrated with the dynamic use of Hard Shoulder Running (HSR). Both VSL and HSR are proactively triggered to allow for necessary control measures to be taken to delay and possibly avoid the formation of a bottleneck. For traffic prediction, a modified METANET model is developed which takes into consideration the complex nature of driver’s behavior along with driver’s compliance, capacity drop and posted speed limits. The modified METANET model is shown to be more efficient than conventional macroscopic prediction models in detecting traffic congestions. This MPC based strategy was tested on a section of Deerfoot Trail, Calgary, Alberta using an exclusively developed integrated VISSIM-COM-MATLAB interface. The results from this study suggested that the integrated VSL and HSR control strategy results in a 21.09% increase in average speed and 33.44%. in vehicle-throughput. Furthermore, there was a noticeable reduction in the average travel time by 39.98% and in the total number of stops, by 32.43%. Importantly, the safety analysis performed using Surrogate Safety Assessment Model (SSAM) revealed a notable reduction in collisions, by 29.73%.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"27 6","pages":"Pages 769-798"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operational and safety impacts of integrated variable speed limit with dynamic hard shoulder running\",\"authors\":\"Karan Arora ,&nbsp;Lina Kattan\",\"doi\":\"10.1080/15472450.2022.2078664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The combination of various Intelligent Transportation System (ITS) strategies generally has manifold effects, much greater than when strategies are implemented individually. This research introduces a novel dynamic control strategy, which includes the dynamic use of a Model Predictive Control (MPC) based Variable Speed Limit (VSL) integrated with the dynamic use of Hard Shoulder Running (HSR). Both VSL and HSR are proactively triggered to allow for necessary control measures to be taken to delay and possibly avoid the formation of a bottleneck. For traffic prediction, a modified METANET model is developed which takes into consideration the complex nature of driver’s behavior along with driver’s compliance, capacity drop and posted speed limits. The modified METANET model is shown to be more efficient than conventional macroscopic prediction models in detecting traffic congestions. This MPC based strategy was tested on a section of Deerfoot Trail, Calgary, Alberta using an exclusively developed integrated VISSIM-COM-MATLAB interface. The results from this study suggested that the integrated VSL and HSR control strategy results in a 21.09% increase in average speed and 33.44%. in vehicle-throughput. Furthermore, there was a noticeable reduction in the average travel time by 39.98% and in the total number of stops, by 32.43%. Importantly, the safety analysis performed using Surrogate Safety Assessment Model (SSAM) revealed a notable reduction in collisions, by 29.73%.</div></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"27 6\",\"pages\":\"Pages 769-798\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245022004340\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022004340","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

智能交通系统(ITS)各种策略的组合通常具有多方面的效果,远远大于单独实施策略时的效果。本文介绍了一种新的动态控制策略,该策略将基于模型预测控制(MPC)的可变限速(VSL)与硬肩跑(HSR)的动态使用相结合。VSL和高铁都是主动触发的,以便采取必要的控制措施来延迟并可能避免形成瓶颈。对于交通预测,我们开发了一个改进的METANET模型,该模型考虑了驾驶员行为的复杂性以及驾驶员的依从性、容量下降和发布的速度限制。改进的METANET模型比传统的宏观预测模型更能有效地检测交通拥堵。这种基于MPC的策略在阿尔伯塔省卡尔加里的Deerfoot Trail的一段上进行了测试,使用了专门开发的集成VISSIM-COM-MATLAB接口。研究结果表明,采用高铁与高速公路相结合的控制策略,平均速度提高21.09%,平均速度提高33.44%。在vehicle-throughput。此外,平均旅行时间减少了39.98%,总停靠次数减少了32.43%。重要的是,使用替代安全评估模型(SSAM)进行的安全分析显示,碰撞率显著降低了29.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operational and safety impacts of integrated variable speed limit with dynamic hard shoulder running
The combination of various Intelligent Transportation System (ITS) strategies generally has manifold effects, much greater than when strategies are implemented individually. This research introduces a novel dynamic control strategy, which includes the dynamic use of a Model Predictive Control (MPC) based Variable Speed Limit (VSL) integrated with the dynamic use of Hard Shoulder Running (HSR). Both VSL and HSR are proactively triggered to allow for necessary control measures to be taken to delay and possibly avoid the formation of a bottleneck. For traffic prediction, a modified METANET model is developed which takes into consideration the complex nature of driver’s behavior along with driver’s compliance, capacity drop and posted speed limits. The modified METANET model is shown to be more efficient than conventional macroscopic prediction models in detecting traffic congestions. This MPC based strategy was tested on a section of Deerfoot Trail, Calgary, Alberta using an exclusively developed integrated VISSIM-COM-MATLAB interface. The results from this study suggested that the integrated VSL and HSR control strategy results in a 21.09% increase in average speed and 33.44%. in vehicle-throughput. Furthermore, there was a noticeable reduction in the average travel time by 39.98% and in the total number of stops, by 32.43%. Importantly, the safety analysis performed using Surrogate Safety Assessment Model (SSAM) revealed a notable reduction in collisions, by 29.73%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Adaptive graph convolutional network-based short-term passenger flow prediction for metro Adaptive green split optimization for traffic control with low penetration rate trajectory data Inferring the number of vehicles between trajectory-observed vehicles Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors Evaluating the impacts of vehicle-mounted Variable Message Signs on passing vehicles: implications for protecting roadside incident and service personnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1