{"title":"Sec22b和Ykt6的失衡调控阻碍了神经元缺血再灌注损伤中自噬体轴突的逆行通路","authors":"Haiying Li, Xiang Li, Zhongmou Xu, Jinxin Lu, Chang Cao, Wanchun You, Zhengquan Yu, Haitao Shen, Gang Chen","doi":"10.1523/JNEUROSCI.2030-21.2022","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral ischemia-reperfusion (I/R) injury in ischemic penumbra is accountable for poor outcome of ischemic stroke patients receiving recanalization therapy. Compelling evidence previously demonstrated a dual role of autophagy in stroke. This study aimed to understand the traits of autophagy in the ischemic penumbra and the potential mechanism that switches the dual role of autophagy. We found that autophagy induction by rapamycin and lithium carbonate performed before ischemia reduced neurologic deficits and infarction, while autophagy induction after reperfusion had the opposite effect in the male murine middle cerebral artery occlusion/reperfusion (MCAO/R) model, both of which were eliminated in mice lacking autophagy (Atg7<sup>flox/flox</sup>; Nestin-Cre). Autophagic flux determination showed that reperfusion led to a blockage of axonal autophagosome retrograde transport in neurons, which then led to autophagic flux damage. Then, we found that I/R induced changes in the protein levels of Sec22b and Ykt6 in neurons, two autophagosome transport-related factors, in which Sec22b significantly increased and Ykt6 significantly decreased. In the absence of exogenous autophagy induction, Sec22b knock-down and Ykt6 overexpression significantly alleviated autophagic flux damage, infarction, and neurologic deficits in neurons or murine exposed to cerebral I/R in an autophagy-dependent manner. Furthermore, Sec22b knock-down and Ykt6 overexpression switched the outcome of rapamycin posttreatment from deterioration to neuroprotection. Thus, Sec22b and Ykt6 play key roles in neuronal autophagic flux, and modest regulation of Sec22b and Ykt6 may help to reverse the failure of targeting autophagy induction to improve the prognosis of ischemic stroke.<b>SIGNIFICANCE STATEMENT</b> The highly polarized architecture of neurons with neurites presents challenges for material transport, such as autophagosomes, which form at the neurite tip and need to be transported to the cell soma for degradation. Here, we demonstrate that Sec22b and Ykt6 act as autophagosome porters and play an important role in maintaining the integrity of neuronal autophagic flux. Ischemia-reperfusion (I/R)-induced excess Sec22b and loss of Ykt6 in neurons lead to axonal autophagosome retrograde trafficking failure, autophagic flux damage, and finally neuronal injury. Facilitated axonal autophagosome retrograde transport by Sec22b knock-down and Ykt6 overexpression may reduce I/R-induced neuron injury and extend the therapeutic window of pharmacological autophagy induction for neuroprotection.</p>","PeriodicalId":9512,"journal":{"name":"Canadian Journal of Animal Science","volume":"98 1","pages":"5641-5654"},"PeriodicalIF":1.2000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295843/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unbalanced Regulation of Sec22b and Ykt6 Blocks Autophagosome Axonal Retrograde Flux in Neuronal Ischemia-Reperfusion Injury.\",\"authors\":\"Haiying Li, Xiang Li, Zhongmou Xu, Jinxin Lu, Chang Cao, Wanchun You, Zhengquan Yu, Haitao Shen, Gang Chen\",\"doi\":\"10.1523/JNEUROSCI.2030-21.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebral ischemia-reperfusion (I/R) injury in ischemic penumbra is accountable for poor outcome of ischemic stroke patients receiving recanalization therapy. Compelling evidence previously demonstrated a dual role of autophagy in stroke. This study aimed to understand the traits of autophagy in the ischemic penumbra and the potential mechanism that switches the dual role of autophagy. We found that autophagy induction by rapamycin and lithium carbonate performed before ischemia reduced neurologic deficits and infarction, while autophagy induction after reperfusion had the opposite effect in the male murine middle cerebral artery occlusion/reperfusion (MCAO/R) model, both of which were eliminated in mice lacking autophagy (Atg7<sup>flox/flox</sup>; Nestin-Cre). Autophagic flux determination showed that reperfusion led to a blockage of axonal autophagosome retrograde transport in neurons, which then led to autophagic flux damage. Then, we found that I/R induced changes in the protein levels of Sec22b and Ykt6 in neurons, two autophagosome transport-related factors, in which Sec22b significantly increased and Ykt6 significantly decreased. In the absence of exogenous autophagy induction, Sec22b knock-down and Ykt6 overexpression significantly alleviated autophagic flux damage, infarction, and neurologic deficits in neurons or murine exposed to cerebral I/R in an autophagy-dependent manner. Furthermore, Sec22b knock-down and Ykt6 overexpression switched the outcome of rapamycin posttreatment from deterioration to neuroprotection. Thus, Sec22b and Ykt6 play key roles in neuronal autophagic flux, and modest regulation of Sec22b and Ykt6 may help to reverse the failure of targeting autophagy induction to improve the prognosis of ischemic stroke.<b>SIGNIFICANCE STATEMENT</b> The highly polarized architecture of neurons with neurites presents challenges for material transport, such as autophagosomes, which form at the neurite tip and need to be transported to the cell soma for degradation. Here, we demonstrate that Sec22b and Ykt6 act as autophagosome porters and play an important role in maintaining the integrity of neuronal autophagic flux. Ischemia-reperfusion (I/R)-induced excess Sec22b and loss of Ykt6 in neurons lead to axonal autophagosome retrograde trafficking failure, autophagic flux damage, and finally neuronal injury. Facilitated axonal autophagosome retrograde transport by Sec22b knock-down and Ykt6 overexpression may reduce I/R-induced neuron injury and extend the therapeutic window of pharmacological autophagy induction for neuroprotection.</p>\",\"PeriodicalId\":9512,\"journal\":{\"name\":\"Canadian Journal of Animal Science\",\"volume\":\"98 1\",\"pages\":\"5641-5654\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295843/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Animal Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.2030-21.2022\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.2030-21.2022","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Unbalanced Regulation of Sec22b and Ykt6 Blocks Autophagosome Axonal Retrograde Flux in Neuronal Ischemia-Reperfusion Injury.
Cerebral ischemia-reperfusion (I/R) injury in ischemic penumbra is accountable for poor outcome of ischemic stroke patients receiving recanalization therapy. Compelling evidence previously demonstrated a dual role of autophagy in stroke. This study aimed to understand the traits of autophagy in the ischemic penumbra and the potential mechanism that switches the dual role of autophagy. We found that autophagy induction by rapamycin and lithium carbonate performed before ischemia reduced neurologic deficits and infarction, while autophagy induction after reperfusion had the opposite effect in the male murine middle cerebral artery occlusion/reperfusion (MCAO/R) model, both of which were eliminated in mice lacking autophagy (Atg7flox/flox; Nestin-Cre). Autophagic flux determination showed that reperfusion led to a blockage of axonal autophagosome retrograde transport in neurons, which then led to autophagic flux damage. Then, we found that I/R induced changes in the protein levels of Sec22b and Ykt6 in neurons, two autophagosome transport-related factors, in which Sec22b significantly increased and Ykt6 significantly decreased. In the absence of exogenous autophagy induction, Sec22b knock-down and Ykt6 overexpression significantly alleviated autophagic flux damage, infarction, and neurologic deficits in neurons or murine exposed to cerebral I/R in an autophagy-dependent manner. Furthermore, Sec22b knock-down and Ykt6 overexpression switched the outcome of rapamycin posttreatment from deterioration to neuroprotection. Thus, Sec22b and Ykt6 play key roles in neuronal autophagic flux, and modest regulation of Sec22b and Ykt6 may help to reverse the failure of targeting autophagy induction to improve the prognosis of ischemic stroke.SIGNIFICANCE STATEMENT The highly polarized architecture of neurons with neurites presents challenges for material transport, such as autophagosomes, which form at the neurite tip and need to be transported to the cell soma for degradation. Here, we demonstrate that Sec22b and Ykt6 act as autophagosome porters and play an important role in maintaining the integrity of neuronal autophagic flux. Ischemia-reperfusion (I/R)-induced excess Sec22b and loss of Ykt6 in neurons lead to axonal autophagosome retrograde trafficking failure, autophagic flux damage, and finally neuronal injury. Facilitated axonal autophagosome retrograde transport by Sec22b knock-down and Ykt6 overexpression may reduce I/R-induced neuron injury and extend the therapeutic window of pharmacological autophagy induction for neuroprotection.
期刊介绍:
Published since 1957, this quarterly journal contains new research on all aspects of animal agriculture and animal products, including breeding and genetics; cellular and molecular biology; growth and development; meat science; modelling animal systems; physiology and endocrinology; ruminant nutrition; non-ruminant nutrition; and welfare, behaviour, and management. It also publishes reviews, letters to the editor, abstracts of technical papers presented at the annual meeting of the Canadian Society of Animal Science, and occasionally conference proceedings.