基于化学传感器的仿生人工肌肉

Andrea Ravalli , Claudio Rossi , Giovanna Marrazza
{"title":"基于化学传感器的仿生人工肌肉","authors":"Andrea Ravalli ,&nbsp;Claudio Rossi ,&nbsp;Giovanna Marrazza","doi":"10.1016/j.protcy.2017.04.070","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we have investigated the modeling, design and fabrication of bio-inspired artificial muscle unit capable of contracting according to the directives sent in form of chemical messengers. This new technology has the potential to revolutionize current robotics, because it could permit a paradigm shift in robots: from electro-mechanical devices to electro-chemical devices. The bio-inspired artificial muscle will be based on basic contractile units coupled to electrochemical sensors, with the purpose of allowing adaptive and flexible control similar to that in animal locomotion. An artificial nerve termination, able to modify the chemical characteristics of the inner environment, will generate directives in form of chemical messengers. Electro-chemical sensors have been used in order to detect the presence of the chemical messengers and transform them into electronic signals to be used in conventional control electronics. This study has been focused on the development and optimization of sensing materials for inorganic ions such as hydrogen ions. Among various conducting polymers studied, polyaniline (PANI) has attracted much attention due to its unique and controllable chemical and electrical properties. PANI layer has been electrochemically deposited on the gold arrays surface by cyclic voltammetry. Preliminary experiments on PANI-modified sensors in order to obtain the better sensitivity as chemical sensing used in artificial muscle unit have been carried out. To allow diffusion of chemical messages, the system has been immersed in wet environment. Using this approach, we study the effective possibility to control, assessing the performance in terms of accuracy of the control of the contraction, the impact of the delay due to the transmission time of the chemicals, precision and stability of control.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 161-162"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.070","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired Artificial Muscle Based on Chemical Sensors\",\"authors\":\"Andrea Ravalli ,&nbsp;Claudio Rossi ,&nbsp;Giovanna Marrazza\",\"doi\":\"10.1016/j.protcy.2017.04.070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we have investigated the modeling, design and fabrication of bio-inspired artificial muscle unit capable of contracting according to the directives sent in form of chemical messengers. This new technology has the potential to revolutionize current robotics, because it could permit a paradigm shift in robots: from electro-mechanical devices to electro-chemical devices. The bio-inspired artificial muscle will be based on basic contractile units coupled to electrochemical sensors, with the purpose of allowing adaptive and flexible control similar to that in animal locomotion. An artificial nerve termination, able to modify the chemical characteristics of the inner environment, will generate directives in form of chemical messengers. Electro-chemical sensors have been used in order to detect the presence of the chemical messengers and transform them into electronic signals to be used in conventional control electronics. This study has been focused on the development and optimization of sensing materials for inorganic ions such as hydrogen ions. Among various conducting polymers studied, polyaniline (PANI) has attracted much attention due to its unique and controllable chemical and electrical properties. PANI layer has been electrochemically deposited on the gold arrays surface by cyclic voltammetry. Preliminary experiments on PANI-modified sensors in order to obtain the better sensitivity as chemical sensing used in artificial muscle unit have been carried out. To allow diffusion of chemical messages, the system has been immersed in wet environment. Using this approach, we study the effective possibility to control, assessing the performance in terms of accuracy of the control of the contraction, the impact of the delay due to the transmission time of the chemicals, precision and stability of control.</p></div>\",\"PeriodicalId\":101042,\"journal\":{\"name\":\"Procedia Technology\",\"volume\":\"27 \",\"pages\":\"Pages 161-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.070\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212017317300713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212017317300713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了仿生人造肌肉单元的建模、设计和制造,这些人造肌肉单元能够根据以化学信使形式发送的指令进行收缩。这项新技术有可能彻底改变目前的机器人技术,因为它可以允许机器人的范式转变:从机电设备到电化学设备。仿生人造肌肉将基于与电化学传感器耦合的基本收缩单元,其目的是允许类似于动物运动的自适应和灵活控制。人工神经终端能够改变内部环境的化学特征,将以化学信使的形式产生指令。为了探测化学信使的存在,已经使用了电化学传感器,并将它们转换成电子信号,用于传统的控制电子学。本研究的重点是氢离子等无机离子传感材料的开发与优化。在研究的众多导电聚合物中,聚苯胺(PANI)因其独特的、可控的化学和电学性能而备受关注。通过循环伏安法在金阵列表面电化学沉积聚苯胺层。为了使聚苯胺改性传感器在人工肌肉单元中获得更好的化学传感灵敏度,进行了初步的实验研究。为了使化学信息能够扩散,该系统被浸泡在潮湿的环境中。利用这种方法,我们研究了有效控制的可能性,从控制收缩的准确性、化学物质传输时间造成的延迟的影响、控制的精度和稳定性等方面评估了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bio-inspired Artificial Muscle Based on Chemical Sensors

In this work, we have investigated the modeling, design and fabrication of bio-inspired artificial muscle unit capable of contracting according to the directives sent in form of chemical messengers. This new technology has the potential to revolutionize current robotics, because it could permit a paradigm shift in robots: from electro-mechanical devices to electro-chemical devices. The bio-inspired artificial muscle will be based on basic contractile units coupled to electrochemical sensors, with the purpose of allowing adaptive and flexible control similar to that in animal locomotion. An artificial nerve termination, able to modify the chemical characteristics of the inner environment, will generate directives in form of chemical messengers. Electro-chemical sensors have been used in order to detect the presence of the chemical messengers and transform them into electronic signals to be used in conventional control electronics. This study has been focused on the development and optimization of sensing materials for inorganic ions such as hydrogen ions. Among various conducting polymers studied, polyaniline (PANI) has attracted much attention due to its unique and controllable chemical and electrical properties. PANI layer has been electrochemically deposited on the gold arrays surface by cyclic voltammetry. Preliminary experiments on PANI-modified sensors in order to obtain the better sensitivity as chemical sensing used in artificial muscle unit have been carried out. To allow diffusion of chemical messages, the system has been immersed in wet environment. Using this approach, we study the effective possibility to control, assessing the performance in terms of accuracy of the control of the contraction, the impact of the delay due to the transmission time of the chemicals, precision and stability of control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanostructured Platform Based on Graphene-polypyrrole Composite for Immunosensor Fabrication Microfluidic Biochip for Studying Cellular Response to Non-homogeneous DC Electric Fields A Nanoporous Alumina Membrane Based Impedance Biosensor for Histamine Detection with Magnetic Nanoparticles Separation and Amplification Single Interdigital Transducer as Surface Acoustic Wave Impedance Sensor Metabolomics on Integrated Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1