基于氮空位色心电偶极子耦合的超高速C-NOT栅

Q4 Engineering 中国科学技术大学学报 Pub Date : 2021-01-01 DOI:10.52396/just-2020-0039
Shunyang Shi, Wentao Ji, Wang Ya, Jiangfeng Du
{"title":"基于氮空位色心电偶极子耦合的超高速C-NOT栅","authors":"Shunyang Shi, Wentao Ji, Wang Ya, Jiangfeng Du","doi":"10.52396/just-2020-0039","DOIUrl":null,"url":null,"abstract":": Our research proposes a new scheme to build a controlled-NOT ( C-NOT ) gate between two adjacent nitrogen-vacancy ( NV ) color centers in diamond , using electric dipole coupling between adjacent NVs and selective resonant laser excitation. The electric dipole coupling between two NVs causes the state dependent energy shift. This allows to apply resonant laser excitation to realize the C-phase gate. Combined with a single qubit operation , C-NOT gate can be implemented quickly. Between two adjacent 10 nm NVs , the C-NOT gate can operate up to 120 ns faster than the traditional magnetic dipole coupling method by 2 magnitudes. In order to reduce the effect of a spontaneous emission , we propose to use a non-resonant cavity to suppress the spontaneous emission. The simulation results show that the C-phase gate fidelity can reach 98 . 88 % . Finally , the scheme is extended to a one-dimensional NV spin chain.","PeriodicalId":17548,"journal":{"name":"中国科学技术大学学报","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ultra-fast C-NOT gate based on electric dipole coupling between nitrogen-vacancy color centers\",\"authors\":\"Shunyang Shi, Wentao Ji, Wang Ya, Jiangfeng Du\",\"doi\":\"10.52396/just-2020-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Our research proposes a new scheme to build a controlled-NOT ( C-NOT ) gate between two adjacent nitrogen-vacancy ( NV ) color centers in diamond , using electric dipole coupling between adjacent NVs and selective resonant laser excitation. The electric dipole coupling between two NVs causes the state dependent energy shift. This allows to apply resonant laser excitation to realize the C-phase gate. Combined with a single qubit operation , C-NOT gate can be implemented quickly. Between two adjacent 10 nm NVs , the C-NOT gate can operate up to 120 ns faster than the traditional magnetic dipole coupling method by 2 magnitudes. In order to reduce the effect of a spontaneous emission , we propose to use a non-resonant cavity to suppress the spontaneous emission. The simulation results show that the C-phase gate fidelity can reach 98 . 88 % . Finally , the scheme is extended to a one-dimensional NV spin chain.\",\"PeriodicalId\":17548,\"journal\":{\"name\":\"中国科学技术大学学报\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国科学技术大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.52396/just-2020-0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国科学技术大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.52396/just-2020-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的方案,利用相邻氮空位(NV)色中心之间的电偶极子耦合和选择性共振激光激发,在金刚石中两个相邻氮空位(NV)色中心之间建立一个受控非(C-NOT)栅极。两个NVs之间的电偶极子耦合引起了状态相关的能量转移。这允许应用谐振激光激发来实现c相栅极。结合单量子位运算,C-NOT门可以快速实现。在两个相邻的10 nm NVs之间,C-NOT栅极的工作速度比传统的磁偶极子耦合方法快2个数量级,最高可达120 ns。为了减少自发发射的影响,我们提出使用非谐振腔来抑制自发发射。仿真结果表明,c相门保真度可达98。88%。最后,将该方法推广到一维NV自旋链上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ultra-fast C-NOT gate based on electric dipole coupling between nitrogen-vacancy color centers
: Our research proposes a new scheme to build a controlled-NOT ( C-NOT ) gate between two adjacent nitrogen-vacancy ( NV ) color centers in diamond , using electric dipole coupling between adjacent NVs and selective resonant laser excitation. The electric dipole coupling between two NVs causes the state dependent energy shift. This allows to apply resonant laser excitation to realize the C-phase gate. Combined with a single qubit operation , C-NOT gate can be implemented quickly. Between two adjacent 10 nm NVs , the C-NOT gate can operate up to 120 ns faster than the traditional magnetic dipole coupling method by 2 magnitudes. In order to reduce the effect of a spontaneous emission , we propose to use a non-resonant cavity to suppress the spontaneous emission. The simulation results show that the C-phase gate fidelity can reach 98 . 88 % . Finally , the scheme is extended to a one-dimensional NV spin chain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国科学技术大学学报
中国科学技术大学学报 Engineering-Mechanical Engineering
CiteScore
0.40
自引率
0.00%
发文量
5692
期刊介绍:
期刊最新文献
Predicting vapor-liquid equilibria of CO<sub>2</sub>+HFC binary mixtures by the PR EOS combined with a group contribution model Design of novel double-layer wrapped ammonium polyphosphate and its application in aging-resistant and flame retardant crosslinked polyethylene composites Effects of residual stress caused by abrasion on the flexoelectric response of BaTiO<sub>3</sub> ceramics Thermophysical properties of 1D materials: Transient characterization down to atomic level Attention: The impact of media attention on market reaction to corporate violations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1