{"title":"非齐次逆向热传导问题离散拟可逆软化方法的同伦分析方法","authors":"M. Rahimi, D. Rostamy","doi":"10.1515/nleng-2022-0304","DOIUrl":null,"url":null,"abstract":"Abstract In this article, the inverse time problem is investigated. Regarding the ill-posed linear problem, utilize the quasi-reversibility method first. This problem has been regularized and after that provides an iterative regularizing strategy for noisy input data that are based on homotopy. For the regularizing solution, the error analysis is proved when we employ noisy measurement data as our initial guess. Finally, numerical implementations are presented.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":"48 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy analysis method for discrete quasi-reversibility mollification method of nonhomogeneous backward heat conduction problem\",\"authors\":\"M. Rahimi, D. Rostamy\",\"doi\":\"10.1515/nleng-2022-0304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, the inverse time problem is investigated. Regarding the ill-posed linear problem, utilize the quasi-reversibility method first. This problem has been regularized and after that provides an iterative regularizing strategy for noisy input data that are based on homotopy. For the regularizing solution, the error analysis is proved when we employ noisy measurement data as our initial guess. Finally, numerical implementations are presented.\",\"PeriodicalId\":37863,\"journal\":{\"name\":\"Nonlinear Engineering - Modeling and Application\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Engineering - Modeling and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nleng-2022-0304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Homotopy analysis method for discrete quasi-reversibility mollification method of nonhomogeneous backward heat conduction problem
Abstract In this article, the inverse time problem is investigated. Regarding the ill-posed linear problem, utilize the quasi-reversibility method first. This problem has been regularized and after that provides an iterative regularizing strategy for noisy input data that are based on homotopy. For the regularizing solution, the error analysis is proved when we employ noisy measurement data as our initial guess. Finally, numerical implementations are presented.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.