柔性生物机械的电控材料

IF 10.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Annual Review of Materials Research Pub Date : 2023-04-26 DOI:10.1146/annurev-matsci-080921-102916
Alexander L. Evenchik, Alexander Q. Kane, E. Oh, R. Truby
{"title":"柔性生物机械的电控材料","authors":"Alexander L. Evenchik, Alexander Q. Kane, E. Oh, R. Truby","doi":"10.1146/annurev-matsci-080921-102916","DOIUrl":null,"url":null,"abstract":"Soft robotics aims to close the performance gap between built and biological machines through materials design. Soft robots are constructed from soft, actuatable materials to be physically intelligent, or to have traits that living organisms possess such as passive adaptability and morphological computation through their compliant, deformable bodies. However, materials selection for physical intelligence often involves low-performance and/or energy-inefficient, stimuli-responsive materials for actuation. Additional challenges in soft robot sensorization and control further limit the practical utility of these machines. Recognizing that electrically controllable materials are crucial for the development of soft machines that are both physically and computationally intelligent, we review progress in the development of electroprogrammable materials for soft robotic actuation. We focus on thermomechanical, electrostatic, and electrochemical actuation strategies that are directly controlled by electric currents and fields. We conclude with an outlook on the design and fabrication of next-generation robotic materials that will facilitate true bioinspired autonomy. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"61 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrically Controllable Materials for Soft, Bioinspired Machines\",\"authors\":\"Alexander L. Evenchik, Alexander Q. Kane, E. Oh, R. Truby\",\"doi\":\"10.1146/annurev-matsci-080921-102916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft robotics aims to close the performance gap between built and biological machines through materials design. Soft robots are constructed from soft, actuatable materials to be physically intelligent, or to have traits that living organisms possess such as passive adaptability and morphological computation through their compliant, deformable bodies. However, materials selection for physical intelligence often involves low-performance and/or energy-inefficient, stimuli-responsive materials for actuation. Additional challenges in soft robot sensorization and control further limit the practical utility of these machines. Recognizing that electrically controllable materials are crucial for the development of soft machines that are both physically and computationally intelligent, we review progress in the development of electroprogrammable materials for soft robotic actuation. We focus on thermomechanical, electrostatic, and electrochemical actuation strategies that are directly controlled by electric currents and fields. We conclude with an outlook on the design and fabrication of next-generation robotic materials that will facilitate true bioinspired autonomy. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8055,\"journal\":{\"name\":\"Annual Review of Materials Research\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-matsci-080921-102916\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-080921-102916","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

软机器人旨在通过材料设计缩小人造机器和生物机器之间的性能差距。软机器人由柔软的、可驱动的材料构成,具有物理智能,或者具有生物体所具有的特征,如被动适应性和形态计算,通过它们柔顺的、可变形的身体。然而,物理智能的材料选择往往涉及低性能和/或能源效率低,刺激响应材料的驱动。软机器人传感器和控制方面的额外挑战进一步限制了这些机器的实际应用。认识到电控材料对于开发具有物理和计算智能的软机器至关重要,我们回顾了用于软机器人驱动的电可编程材料的开发进展。我们关注的是由电流和电场直接控制的热机械、静电和电化学驱动策略。最后,我们展望了下一代机器人材料的设计和制造,这将促进真正的仿生自主。预计《材料研究年度评论》第53卷的最终在线出版日期为2023年7月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrically Controllable Materials for Soft, Bioinspired Machines
Soft robotics aims to close the performance gap between built and biological machines through materials design. Soft robots are constructed from soft, actuatable materials to be physically intelligent, or to have traits that living organisms possess such as passive adaptability and morphological computation through their compliant, deformable bodies. However, materials selection for physical intelligence often involves low-performance and/or energy-inefficient, stimuli-responsive materials for actuation. Additional challenges in soft robot sensorization and control further limit the practical utility of these machines. Recognizing that electrically controllable materials are crucial for the development of soft machines that are both physically and computationally intelligent, we review progress in the development of electroprogrammable materials for soft robotic actuation. We focus on thermomechanical, electrostatic, and electrochemical actuation strategies that are directly controlled by electric currents and fields. We conclude with an outlook on the design and fabrication of next-generation robotic materials that will facilitate true bioinspired autonomy. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Materials Research
Annual Review of Materials Research 工程技术-材料科学:综合
CiteScore
17.70
自引率
1.00%
发文量
21
期刊介绍: The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.
期刊最新文献
Chemical Botany: Bottlebrush Polymers in Materials Science Circular Steel for Fast Decarbonization: Thermodynamics, Kinetics, and Microstructure Behind Upcycling Scrap into High-Performance Sheet Steel Structural Chirality and Electronic Chirality in Quantum Materials Degradation Processes in Current Commercialized Li-Ion Batteries and Strategies to Mitigate Them Oxygen Redox in Alkali-Ion Battery Cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1