{"title":"通过迭代舍入对具有异常值的k中值和k均值进行常数逼近","authors":"Ravishankar Krishnaswamy, Shi Li, Sai Sandeep","doi":"10.1145/3188745.3188882","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new iterative rounding framework for many clustering problems. Using this, we obtain an (α1 + є ≤ 7.081 + є)-approximation algorithm for k-median with outliers, greatly improving upon the large implicit constant approximation ratio of Chen. For k-means with outliers, we give an (α2+є ≤ 53.002 + є)-approximation, which is the first O(1)-approximation for this problem. The iterative algorithm framework is very versatile; we show how it can be used to give α1- and (α1 + є)-approximation algorithms for matroid and knapsack median problems respectively, improving upon the previous best approximations ratios of 8 due to Swamy and 17.46 due to Byrka et al. The natural LP relaxation for the k-median/k-means with outliers problem has an unbounded integrality gap. In spite of this negative result, our iterative rounding framework shows that we can round an LP solution to an almost-integral solution of small cost, in which we have at most two fractionally open facilities. Thus, the LP integrality gap arises due to the gap between almost-integral and fully-integral solutions. Then, using a pre-processing procedure, we show how to convert an almost-integral solution to a fully-integral solution losing only a constant-factor in the approximation ratio. By further using a sparsification technique, the additive factor loss incurred by the conversion can be reduced to any є > 0.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"240 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"Constant approximation for k-median and k-means with outliers via iterative rounding\",\"authors\":\"Ravishankar Krishnaswamy, Shi Li, Sai Sandeep\",\"doi\":\"10.1145/3188745.3188882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new iterative rounding framework for many clustering problems. Using this, we obtain an (α1 + є ≤ 7.081 + є)-approximation algorithm for k-median with outliers, greatly improving upon the large implicit constant approximation ratio of Chen. For k-means with outliers, we give an (α2+є ≤ 53.002 + є)-approximation, which is the first O(1)-approximation for this problem. The iterative algorithm framework is very versatile; we show how it can be used to give α1- and (α1 + є)-approximation algorithms for matroid and knapsack median problems respectively, improving upon the previous best approximations ratios of 8 due to Swamy and 17.46 due to Byrka et al. The natural LP relaxation for the k-median/k-means with outliers problem has an unbounded integrality gap. In spite of this negative result, our iterative rounding framework shows that we can round an LP solution to an almost-integral solution of small cost, in which we have at most two fractionally open facilities. Thus, the LP integrality gap arises due to the gap between almost-integral and fully-integral solutions. Then, using a pre-processing procedure, we show how to convert an almost-integral solution to a fully-integral solution losing only a constant-factor in the approximation ratio. By further using a sparsification technique, the additive factor loss incurred by the conversion can be reduced to any є > 0.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constant approximation for k-median and k-means with outliers via iterative rounding
In this paper, we present a new iterative rounding framework for many clustering problems. Using this, we obtain an (α1 + є ≤ 7.081 + є)-approximation algorithm for k-median with outliers, greatly improving upon the large implicit constant approximation ratio of Chen. For k-means with outliers, we give an (α2+є ≤ 53.002 + є)-approximation, which is the first O(1)-approximation for this problem. The iterative algorithm framework is very versatile; we show how it can be used to give α1- and (α1 + є)-approximation algorithms for matroid and knapsack median problems respectively, improving upon the previous best approximations ratios of 8 due to Swamy and 17.46 due to Byrka et al. The natural LP relaxation for the k-median/k-means with outliers problem has an unbounded integrality gap. In spite of this negative result, our iterative rounding framework shows that we can round an LP solution to an almost-integral solution of small cost, in which we have at most two fractionally open facilities. Thus, the LP integrality gap arises due to the gap between almost-integral and fully-integral solutions. Then, using a pre-processing procedure, we show how to convert an almost-integral solution to a fully-integral solution losing only a constant-factor in the approximation ratio. By further using a sparsification technique, the additive factor loss incurred by the conversion can be reduced to any є > 0.