{"title":"具有离子植入发射极的商业尺寸多晶硅太阳能电池","authors":"A. Ebong, Yizhe Wang, Guangyao Jin, T. Zhou","doi":"10.1109/PVSC.2013.6744910","DOIUrl":null,"url":null,"abstract":"This paper reports on the preliminary results of the first manufacturable ion implanted multicrystalline silicon solar cells with mean efficiency of 16.60%. The best efficiency of 16.83% is demonstrated, which is the highest reported ion implanted 243.4 cm2 multicrystalline silicon solar cell with Al back surface field. A dose of 2.8E15 atom.cm2 at 15-keV was used and annealed at implant anneal similar to the mono crystalline solar cell counterparts. The open circuit voltage of ~621 mV and the measured internal quantum efficiency (IQE) were similar to multicrystalline cells using POCl3 emitter. This results is very promising and confirms that the bulk lifetime does not degrade during the implant anneal.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"38 1","pages":"2191-2194"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commercial size multicrytalline silicon solar cell with ion implant emitter\",\"authors\":\"A. Ebong, Yizhe Wang, Guangyao Jin, T. Zhou\",\"doi\":\"10.1109/PVSC.2013.6744910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the preliminary results of the first manufacturable ion implanted multicrystalline silicon solar cells with mean efficiency of 16.60%. The best efficiency of 16.83% is demonstrated, which is the highest reported ion implanted 243.4 cm2 multicrystalline silicon solar cell with Al back surface field. A dose of 2.8E15 atom.cm2 at 15-keV was used and annealed at implant anneal similar to the mono crystalline solar cell counterparts. The open circuit voltage of ~621 mV and the measured internal quantum efficiency (IQE) were similar to multicrystalline cells using POCl3 emitter. This results is very promising and confirms that the bulk lifetime does not degrade during the implant anneal.\",\"PeriodicalId\":6350,\"journal\":{\"name\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"38 1\",\"pages\":\"2191-2194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2013.6744910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6744910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Commercial size multicrytalline silicon solar cell with ion implant emitter
This paper reports on the preliminary results of the first manufacturable ion implanted multicrystalline silicon solar cells with mean efficiency of 16.60%. The best efficiency of 16.83% is demonstrated, which is the highest reported ion implanted 243.4 cm2 multicrystalline silicon solar cell with Al back surface field. A dose of 2.8E15 atom.cm2 at 15-keV was used and annealed at implant anneal similar to the mono crystalline solar cell counterparts. The open circuit voltage of ~621 mV and the measured internal quantum efficiency (IQE) were similar to multicrystalline cells using POCl3 emitter. This results is very promising and confirms that the bulk lifetime does not degrade during the implant anneal.