Y. Thonnart, M. Zid, J. L. Jiménez, G. Waltener, R. Polster, O. Dubray, F. Lepin, S. Bernabé, S. Menezo, G. Pares, O. Castany, L. Boutafa, P. Grosse, B. Charbonnier, C. Baudot
{"title":"用于1Tb/s/mm2模对模光网络的150μW、120μs锁时间数字监督模拟微环波长稳定的10Gb/s硅光子收发器","authors":"Y. Thonnart, M. Zid, J. L. Jiménez, G. Waltener, R. Polster, O. Dubray, F. Lepin, S. Bernabé, S. Menezo, G. Pares, O. Castany, L. Boutafa, P. Grosse, B. Charbonnier, C. Baudot","doi":"10.1109/ISSCC.2018.8310328","DOIUrl":null,"url":null,"abstract":"Silicon photonics has allowed cost reduction and performance improvement for optical interconnects for the past few years, and short-reach wavelength-division-multiplexed (WDM) links have recently emerged thanks to the introduction of microring modulators and filters [1-5]. Nevertheless, the promise of optical networks-on-chip foreseen in [1] has to face the integration challenges of scalable low-footprint elementary drivers and robust operation under heavy thermal stress due to self-heating of the cores with varying loads. This work presents a 3D-stacked CMOS-on-Si-photonic transceiver chip, which includes base building-blocks targeting die-to-die WDM optical communication for multicore processors: 10Gbps 2.5Vpp OOK modulator driver, associated receiver, and digitally-supervised analog wavelength stabilization using microring heaters and remapping for 0-to-90°C operating range, for a total footprint of 0.01mm2 per microring.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"130 1","pages":"350-352"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A 10Gb/s Si-photonic transceiver with 150μW 120μs-lock-time digitally supervised analog microring wavelength stabilization for 1Tb/s/mm2 Die-to-Die Optical Networks\",\"authors\":\"Y. Thonnart, M. Zid, J. L. Jiménez, G. Waltener, R. Polster, O. Dubray, F. Lepin, S. Bernabé, S. Menezo, G. Pares, O. Castany, L. Boutafa, P. Grosse, B. Charbonnier, C. Baudot\",\"doi\":\"10.1109/ISSCC.2018.8310328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon photonics has allowed cost reduction and performance improvement for optical interconnects for the past few years, and short-reach wavelength-division-multiplexed (WDM) links have recently emerged thanks to the introduction of microring modulators and filters [1-5]. Nevertheless, the promise of optical networks-on-chip foreseen in [1] has to face the integration challenges of scalable low-footprint elementary drivers and robust operation under heavy thermal stress due to self-heating of the cores with varying loads. This work presents a 3D-stacked CMOS-on-Si-photonic transceiver chip, which includes base building-blocks targeting die-to-die WDM optical communication for multicore processors: 10Gbps 2.5Vpp OOK modulator driver, associated receiver, and digitally-supervised analog wavelength stabilization using microring heaters and remapping for 0-to-90°C operating range, for a total footprint of 0.01mm2 per microring.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"130 1\",\"pages\":\"350-352\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 10Gb/s Si-photonic transceiver with 150μW 120μs-lock-time digitally supervised analog microring wavelength stabilization for 1Tb/s/mm2 Die-to-Die Optical Networks
Silicon photonics has allowed cost reduction and performance improvement for optical interconnects for the past few years, and short-reach wavelength-division-multiplexed (WDM) links have recently emerged thanks to the introduction of microring modulators and filters [1-5]. Nevertheless, the promise of optical networks-on-chip foreseen in [1] has to face the integration challenges of scalable low-footprint elementary drivers and robust operation under heavy thermal stress due to self-heating of the cores with varying loads. This work presents a 3D-stacked CMOS-on-Si-photonic transceiver chip, which includes base building-blocks targeting die-to-die WDM optical communication for multicore processors: 10Gbps 2.5Vpp OOK modulator driver, associated receiver, and digitally-supervised analog wavelength stabilization using microring heaters and remapping for 0-to-90°C operating range, for a total footprint of 0.01mm2 per microring.