{"title":"阿格拉世界遗产地大小分离颗粒物的化学特征和健康风险评估","authors":"Rahul Tiwari , Akshay Botle , Sartaj Ahmad Bhat , Prabal P. Singh , Ajay Taneja","doi":"10.1016/j.clce.2022.100049","DOIUrl":null,"url":null,"abstract":"<div><p>Air quality at two traffic junctions representing GLA indicating pollution at highway and Iradatnagar indicating rural pollution was evaluated in Uttar Pradesh, India. The present study aimed to determine the concentration of size-segregated PM with the characterization of metals at different traffic junctions i.e. (Agra and Mathura). In the study, PM<sub>2.5–1.0</sub> and PM<sub>1.0–0.5</sub> were measured with the help of Cascade Sioutas Impactor during the study period December to January 2018. The size fraction of PM<sub>2.5–1.0</sub> was found to be higher at GLA (350.92 µg/m<sup>3</sup>) followed by Iradatnagar (329.12 µg/m<sup>3</sup>), whereas the average value of size fraction of PM<sub>1.0–0.5</sub> was found higher at Iradatnagar (341.01 µg/m<sup>3</sup>) in comparison with GLA (313.47 µg/m<sup>3</sup>) respectively. The average PM<sub>2.5</sub> concentration in all the sampling sites was found to be 7–8 times higher when compared with the National Ambient Air Quality Standards (60 µg/m<sup>3</sup>) (NAAQS, India). Twelve metals viz. (Al, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) were subsequently determined by ICP-OES. Al, Ba, Ca, and Mg, were found in higher concentrations in comparison with other metals. Source apportionment of metals was done by PCA (Principal Component Analysis) which shows that metal loading of Al, Ca, Cr, Cu, Fe, and Ni was influenced by vehicular emission with 33.6% constitutes of the total variance. Higher bioavaiablity was observed for PM<sub>2.5–1.0</sub> (5.12–6.46%) and least was found for PM<sub>1.0–0.5</sub> (4.56–7.055%). For health risk estimation, the average value of HQs was found higher for PM<sub>1.0–0.5</sub> size fraction. HQ values were recorded higher for GLA (7.95) for PM<sub>2.5–1.0</sub> and (9.50) for PM<sub>1.0–0.5</sub> fraction. Overall, the observed HQs values far exceeded the acceptable level. Average value (1 × 10<sup>–</sup><sup>6</sup>) of carcinogenic risk factor was found higher for an adult and child respectively.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"3 ","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277278232200047X/pdfft?md5=4378ff4dc4c5aec50e8ba2962c6f980a&pid=1-s2.0-S277278232200047X-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Chemical characterization and health risk assessement of size segreated PM at world heritage site, Agra\",\"authors\":\"Rahul Tiwari , Akshay Botle , Sartaj Ahmad Bhat , Prabal P. Singh , Ajay Taneja\",\"doi\":\"10.1016/j.clce.2022.100049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Air quality at two traffic junctions representing GLA indicating pollution at highway and Iradatnagar indicating rural pollution was evaluated in Uttar Pradesh, India. The present study aimed to determine the concentration of size-segregated PM with the characterization of metals at different traffic junctions i.e. (Agra and Mathura). In the study, PM<sub>2.5–1.0</sub> and PM<sub>1.0–0.5</sub> were measured with the help of Cascade Sioutas Impactor during the study period December to January 2018. The size fraction of PM<sub>2.5–1.0</sub> was found to be higher at GLA (350.92 µg/m<sup>3</sup>) followed by Iradatnagar (329.12 µg/m<sup>3</sup>), whereas the average value of size fraction of PM<sub>1.0–0.5</sub> was found higher at Iradatnagar (341.01 µg/m<sup>3</sup>) in comparison with GLA (313.47 µg/m<sup>3</sup>) respectively. The average PM<sub>2.5</sub> concentration in all the sampling sites was found to be 7–8 times higher when compared with the National Ambient Air Quality Standards (60 µg/m<sup>3</sup>) (NAAQS, India). Twelve metals viz. (Al, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) were subsequently determined by ICP-OES. Al, Ba, Ca, and Mg, were found in higher concentrations in comparison with other metals. Source apportionment of metals was done by PCA (Principal Component Analysis) which shows that metal loading of Al, Ca, Cr, Cu, Fe, and Ni was influenced by vehicular emission with 33.6% constitutes of the total variance. Higher bioavaiablity was observed for PM<sub>2.5–1.0</sub> (5.12–6.46%) and least was found for PM<sub>1.0–0.5</sub> (4.56–7.055%). For health risk estimation, the average value of HQs was found higher for PM<sub>1.0–0.5</sub> size fraction. HQ values were recorded higher for GLA (7.95) for PM<sub>2.5–1.0</sub> and (9.50) for PM<sub>1.0–0.5</sub> fraction. Overall, the observed HQs values far exceeded the acceptable level. Average value (1 × 10<sup>–</sup><sup>6</sup>) of carcinogenic risk factor was found higher for an adult and child respectively.</p></div>\",\"PeriodicalId\":100251,\"journal\":{\"name\":\"Cleaner Chemical Engineering\",\"volume\":\"3 \",\"pages\":\"Article 100049\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277278232200047X/pdfft?md5=4378ff4dc4c5aec50e8ba2962c6f980a&pid=1-s2.0-S277278232200047X-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277278232200047X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277278232200047X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemical characterization and health risk assessement of size segreated PM at world heritage site, Agra
Air quality at two traffic junctions representing GLA indicating pollution at highway and Iradatnagar indicating rural pollution was evaluated in Uttar Pradesh, India. The present study aimed to determine the concentration of size-segregated PM with the characterization of metals at different traffic junctions i.e. (Agra and Mathura). In the study, PM2.5–1.0 and PM1.0–0.5 were measured with the help of Cascade Sioutas Impactor during the study period December to January 2018. The size fraction of PM2.5–1.0 was found to be higher at GLA (350.92 µg/m3) followed by Iradatnagar (329.12 µg/m3), whereas the average value of size fraction of PM1.0–0.5 was found higher at Iradatnagar (341.01 µg/m3) in comparison with GLA (313.47 µg/m3) respectively. The average PM2.5 concentration in all the sampling sites was found to be 7–8 times higher when compared with the National Ambient Air Quality Standards (60 µg/m3) (NAAQS, India). Twelve metals viz. (Al, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) were subsequently determined by ICP-OES. Al, Ba, Ca, and Mg, were found in higher concentrations in comparison with other metals. Source apportionment of metals was done by PCA (Principal Component Analysis) which shows that metal loading of Al, Ca, Cr, Cu, Fe, and Ni was influenced by vehicular emission with 33.6% constitutes of the total variance. Higher bioavaiablity was observed for PM2.5–1.0 (5.12–6.46%) and least was found for PM1.0–0.5 (4.56–7.055%). For health risk estimation, the average value of HQs was found higher for PM1.0–0.5 size fraction. HQ values were recorded higher for GLA (7.95) for PM2.5–1.0 and (9.50) for PM1.0–0.5 fraction. Overall, the observed HQs values far exceeded the acceptable level. Average value (1 × 10–6) of carcinogenic risk factor was found higher for an adult and child respectively.