S. K. Kumar, K. Kavyashree, B. Pallavi, S. Kiran, N. S. Kumar, P. Sharanappa
{"title":"基于ZnO纳米颗粒的酶促葡萄糖传感器的制备与表征","authors":"S. K. Kumar, K. Kavyashree, B. Pallavi, S. Kiran, N. S. Kumar, P. Sharanappa","doi":"10.1109/ICANMEET.2013.6609320","DOIUrl":null,"url":null,"abstract":"Nanomaterials have been found to exhibit interesting properties like semiconducting, piezoelectricity etc. Among all metal oxides nanoparticles, particularly Zinc Oxide has become a material of interest among scientific community, due to the commercial importance. Zinc Oxide materials are biocompatible, chemically stable, nontoxic, electrochemically active and have fast electron transfer rate. In the present work a method of fabricating glucose sensor is described. ZnO nanoparticles are synthesized using wet chemical method. The synthesized nanoparticles are dip coated onto a silicon substrate. Enzyme immobilization is done on the nanoparticles by keeping the thin film in 4°C for 24 hrs. Optical and structural characterization of the synthesized sample is studied. The result of UV spectrometer reveals the formation of ZnO nanoparticles by showing absorption peak at 376.27 nm. The XRD pattern taken for the ZnO nanoparticles showed that the average particle size is to be 21.6 nm. SEM image of the sample is taken by depositing on the silicon wafer. Finally sensing property of sensor is examined by establishing contacts. The studies showed that the sensor has a linear response to the change in glucose concentration.","PeriodicalId":13708,"journal":{"name":"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies","volume":"108 1","pages":"363-366"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fabrication and characterization of enzymatic glucose sensor based on ZnO nanoparticles\",\"authors\":\"S. K. Kumar, K. Kavyashree, B. Pallavi, S. Kiran, N. S. Kumar, P. Sharanappa\",\"doi\":\"10.1109/ICANMEET.2013.6609320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanomaterials have been found to exhibit interesting properties like semiconducting, piezoelectricity etc. Among all metal oxides nanoparticles, particularly Zinc Oxide has become a material of interest among scientific community, due to the commercial importance. Zinc Oxide materials are biocompatible, chemically stable, nontoxic, electrochemically active and have fast electron transfer rate. In the present work a method of fabricating glucose sensor is described. ZnO nanoparticles are synthesized using wet chemical method. The synthesized nanoparticles are dip coated onto a silicon substrate. Enzyme immobilization is done on the nanoparticles by keeping the thin film in 4°C for 24 hrs. Optical and structural characterization of the synthesized sample is studied. The result of UV spectrometer reveals the formation of ZnO nanoparticles by showing absorption peak at 376.27 nm. The XRD pattern taken for the ZnO nanoparticles showed that the average particle size is to be 21.6 nm. SEM image of the sample is taken by depositing on the silicon wafer. Finally sensing property of sensor is examined by establishing contacts. The studies showed that the sensor has a linear response to the change in glucose concentration.\",\"PeriodicalId\":13708,\"journal\":{\"name\":\"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies\",\"volume\":\"108 1\",\"pages\":\"363-366\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICANMEET.2013.6609320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICANMEET.2013.6609320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and characterization of enzymatic glucose sensor based on ZnO nanoparticles
Nanomaterials have been found to exhibit interesting properties like semiconducting, piezoelectricity etc. Among all metal oxides nanoparticles, particularly Zinc Oxide has become a material of interest among scientific community, due to the commercial importance. Zinc Oxide materials are biocompatible, chemically stable, nontoxic, electrochemically active and have fast electron transfer rate. In the present work a method of fabricating glucose sensor is described. ZnO nanoparticles are synthesized using wet chemical method. The synthesized nanoparticles are dip coated onto a silicon substrate. Enzyme immobilization is done on the nanoparticles by keeping the thin film in 4°C for 24 hrs. Optical and structural characterization of the synthesized sample is studied. The result of UV spectrometer reveals the formation of ZnO nanoparticles by showing absorption peak at 376.27 nm. The XRD pattern taken for the ZnO nanoparticles showed that the average particle size is to be 21.6 nm. SEM image of the sample is taken by depositing on the silicon wafer. Finally sensing property of sensor is examined by establishing contacts. The studies showed that the sensor has a linear response to the change in glucose concentration.