{"title":"使用 MCDM 技术评估流体压力对 AA6063 热处理管材弯曲质量的影响","authors":"Vahid Modanloo , Majid Elyasi , Hossein Talebi-Ghadikolaee , Farzad Ahmadi Khatir , Behnam Akhoundi","doi":"10.1016/j.jer.2023.07.012","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the bending of aluminum tubes under different fluid pressure and heat treatment conditions. The application of multi-criteria decision-making (MCDM) methods was evaluated for selecting the best forming condition considering cross-section ovality, thinning, and thickening of the bent tubes. Analytic hierarchy process (AHP) was used for criteria weighting, and technique for order of preference by similarity to ideal solution (TOPSIS) and multi-objective optimization on the basis of ratio analysis (MOORA) were used for alternative ranking. A combination of various types of AA6063 tubes, including as-received (R), annealed (O), and artificial aged (T6), with different fluid pressures (0, 1, 1.8, 3.2, and 3.6 MPa) were assumed to be as the alternatives (forming conditions). The results demonstrate that the ovality and thickening of the bent tubes decrease by increasing the internal fluid pressure. On the other hand, increasing the internal fluid pressure gives rise to an increase in thinning of bent tubes. The O sample has the lowest ovality and thickening while the T6 sample has the lowest thinning. MCDM analysis revealed that the O samples at higher pressures show better bendability.</p></div>","PeriodicalId":48803,"journal":{"name":"Journal of Engineering Research","volume":"12 1","pages":"Pages 251-258"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2307187723001736/pdfft?md5=2b8518097fc88fedbd5732c4f670dd04&pid=1-s2.0-S2307187723001736-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The use of MCDM techniques to assess fluid pressure on the bending quality of AA6063 heat-treated tubes\",\"authors\":\"Vahid Modanloo , Majid Elyasi , Hossein Talebi-Ghadikolaee , Farzad Ahmadi Khatir , Behnam Akhoundi\",\"doi\":\"10.1016/j.jer.2023.07.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the bending of aluminum tubes under different fluid pressure and heat treatment conditions. The application of multi-criteria decision-making (MCDM) methods was evaluated for selecting the best forming condition considering cross-section ovality, thinning, and thickening of the bent tubes. Analytic hierarchy process (AHP) was used for criteria weighting, and technique for order of preference by similarity to ideal solution (TOPSIS) and multi-objective optimization on the basis of ratio analysis (MOORA) were used for alternative ranking. A combination of various types of AA6063 tubes, including as-received (R), annealed (O), and artificial aged (T6), with different fluid pressures (0, 1, 1.8, 3.2, and 3.6 MPa) were assumed to be as the alternatives (forming conditions). The results demonstrate that the ovality and thickening of the bent tubes decrease by increasing the internal fluid pressure. On the other hand, increasing the internal fluid pressure gives rise to an increase in thinning of bent tubes. The O sample has the lowest ovality and thickening while the T6 sample has the lowest thinning. MCDM analysis revealed that the O samples at higher pressures show better bendability.</p></div>\",\"PeriodicalId\":48803,\"journal\":{\"name\":\"Journal of Engineering Research\",\"volume\":\"12 1\",\"pages\":\"Pages 251-258\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2307187723001736/pdfft?md5=2b8518097fc88fedbd5732c4f670dd04&pid=1-s2.0-S2307187723001736-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307187723001736\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307187723001736","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
The use of MCDM techniques to assess fluid pressure on the bending quality of AA6063 heat-treated tubes
This paper investigates the bending of aluminum tubes under different fluid pressure and heat treatment conditions. The application of multi-criteria decision-making (MCDM) methods was evaluated for selecting the best forming condition considering cross-section ovality, thinning, and thickening of the bent tubes. Analytic hierarchy process (AHP) was used for criteria weighting, and technique for order of preference by similarity to ideal solution (TOPSIS) and multi-objective optimization on the basis of ratio analysis (MOORA) were used for alternative ranking. A combination of various types of AA6063 tubes, including as-received (R), annealed (O), and artificial aged (T6), with different fluid pressures (0, 1, 1.8, 3.2, and 3.6 MPa) were assumed to be as the alternatives (forming conditions). The results demonstrate that the ovality and thickening of the bent tubes decrease by increasing the internal fluid pressure. On the other hand, increasing the internal fluid pressure gives rise to an increase in thinning of bent tubes. The O sample has the lowest ovality and thickening while the T6 sample has the lowest thinning. MCDM analysis revealed that the O samples at higher pressures show better bendability.
期刊介绍:
Journal of Engineering Research (JER) is a international, peer reviewed journal which publishes full length original research papers, reviews, case studies related to all areas of Engineering such as: Civil, Mechanical, Industrial, Electrical, Computer, Chemical, Petroleum, Aerospace, Architectural, Biomedical, Coastal, Environmental, Marine & Ocean, Metallurgical & Materials, software, Surveying, Systems and Manufacturing Engineering. In particular, JER focuses on innovative approaches and methods that contribute to solving the environmental and manufacturing problems, which exist primarily in the Arabian Gulf region and the Middle East countries. Kuwait University used to publish the Journal "Kuwait Journal of Science and Engineering" (ISSN: 1024-8684), which included Science and Engineering articles since 1974. In 2011 the decision was taken to split KJSE into two independent Journals - "Journal of Engineering Research "(JER) and "Kuwait Journal of Science" (KJS).