东北太平洋两个河口入侵类鱿鱼桡足类拟虾的摄食动态

IF 1.3 4区 生物学 Q3 MARINE & FRESHWATER BIOLOGY Aquatic Biology Pub Date : 2022-01-01 DOI:10.3354/ab00752
J. Jacobs, G. Rollwagen‐Bollens, SM Bollens
{"title":"东北太平洋两个河口入侵类鱿鱼桡足类拟虾的摄食动态","authors":"J. Jacobs, G. Rollwagen‐Bollens, SM Bollens","doi":"10.3354/ab00752","DOIUrl":null,"url":null,"abstract":": The Asian calanoid copepod Pseudodiaptomus inopinus , first observed in the Columbia River Estuary in the early 1990s, has since become the dominant copepod species in many estuaries along the US Pacific coast, but its feeding behavior has not been previously studied. In October 2019 and 2020, when P. inopinus was at peak seasonal abundance, we conducted incubation experiments with this species feeding on natural microplankton prey assemblages sampled from 2 invaded estuaries: the Chehalis River estuary, Washington, and the Yaquina River estuary, Oregon. In both estuaries, diatoms were the most numerically abundant prey group, with 11− 15 μm Chaetoceros sp. and 21−25 μm Cyclotella sp. dominating the Chehalis and Yaquina estuaries, respectively. Diatom and ciliate biomass were highest in both estuaries, with all prey cells in the Yaquina estuary typically larger than those in the Chehalis estuary. P. inopinus fed omnivorously on microplankton prey, with a preference for prey >20 μm and occasional avoidance of cyanobacteria and cells <10 μm. Ingestion rates were highest on ciliates and diatoms. The omnivory of P. inopinus may contribute to its success as an invader in northeast Pacific estuaries.","PeriodicalId":8111,"journal":{"name":"Aquatic Biology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feeding dynamics of the invasive calanoid copepod, Pseudodiaptomus inopinus, in two northeast Pacific estuaries\",\"authors\":\"J. Jacobs, G. Rollwagen‐Bollens, SM Bollens\",\"doi\":\"10.3354/ab00752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The Asian calanoid copepod Pseudodiaptomus inopinus , first observed in the Columbia River Estuary in the early 1990s, has since become the dominant copepod species in many estuaries along the US Pacific coast, but its feeding behavior has not been previously studied. In October 2019 and 2020, when P. inopinus was at peak seasonal abundance, we conducted incubation experiments with this species feeding on natural microplankton prey assemblages sampled from 2 invaded estuaries: the Chehalis River estuary, Washington, and the Yaquina River estuary, Oregon. In both estuaries, diatoms were the most numerically abundant prey group, with 11− 15 μm Chaetoceros sp. and 21−25 μm Cyclotella sp. dominating the Chehalis and Yaquina estuaries, respectively. Diatom and ciliate biomass were highest in both estuaries, with all prey cells in the Yaquina estuary typically larger than those in the Chehalis estuary. P. inopinus fed omnivorously on microplankton prey, with a preference for prey >20 μm and occasional avoidance of cyanobacteria and cells <10 μm. Ingestion rates were highest on ciliates and diatoms. The omnivory of P. inopinus may contribute to its success as an invader in northeast Pacific estuaries.\",\"PeriodicalId\":8111,\"journal\":{\"name\":\"Aquatic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3354/ab00752\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/ab00752","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

亚洲calanoid桡足类Pseudodiaptomus inopinus于20世纪90年代初在哥伦比亚河河口首次被发现,后来成为美国太平洋沿岸许多河口的优势桡足类物种,但其摄食行为此前尚未被研究过。在2019年10月和2020年10月,当inopininus的季节性丰度达到峰值时,我们对该物种进行了孵化实验,该物种以从两个入侵河口(华盛顿州的Chehalis河河口和俄勒冈州的Yaquina河河口)采集的天然浮游生物猎物组合为食。在这两个河口中,硅藻是数量最多的猎物类群,Chehalis和Yaquina河口分别以11 ~ 15 μm Chaetoceros sp和21 ~ 25 μm Cyclotella sp为主。两个河口的硅藻和纤毛虫生物量均最高,且亚奎纳河口的所有猎物细胞均大于切哈里斯河口。P. inopininus对微小浮游生物的摄食是全方位的,对>20 μm的猎物有偏好,对<10 μm的蓝藻和细胞有偶尔的回避。食入率最高的是纤毛虫和硅藻。这种杂食性可能有助于其在东北太平洋河口成功入侵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feeding dynamics of the invasive calanoid copepod, Pseudodiaptomus inopinus, in two northeast Pacific estuaries
: The Asian calanoid copepod Pseudodiaptomus inopinus , first observed in the Columbia River Estuary in the early 1990s, has since become the dominant copepod species in many estuaries along the US Pacific coast, but its feeding behavior has not been previously studied. In October 2019 and 2020, when P. inopinus was at peak seasonal abundance, we conducted incubation experiments with this species feeding on natural microplankton prey assemblages sampled from 2 invaded estuaries: the Chehalis River estuary, Washington, and the Yaquina River estuary, Oregon. In both estuaries, diatoms were the most numerically abundant prey group, with 11− 15 μm Chaetoceros sp. and 21−25 μm Cyclotella sp. dominating the Chehalis and Yaquina estuaries, respectively. Diatom and ciliate biomass were highest in both estuaries, with all prey cells in the Yaquina estuary typically larger than those in the Chehalis estuary. P. inopinus fed omnivorously on microplankton prey, with a preference for prey >20 μm and occasional avoidance of cyanobacteria and cells <10 μm. Ingestion rates were highest on ciliates and diatoms. The omnivory of P. inopinus may contribute to its success as an invader in northeast Pacific estuaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Biology
Aquatic Biology 生物-海洋与淡水生物学
CiteScore
2.70
自引率
0.00%
发文量
7
审稿时长
3 months
期刊介绍: AB publishes rigorously refereed and carefully selected Feature Articles, Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections, Opinion Pieces (previously called ''As I See It'') (for details consult the Guidelines for Authors) concerned with the biology, physiology, biochemistry and genetics (including the ’omics‘) of all aquatic organisms under laboratory and field conditions, and at all levels of organisation and investigation. Areas covered include: -Biological aspects of biota: Evolution and speciation; life histories; biodiversity, biogeography and phylogeography; population genetics; biological connectedness between marine and freshwater biota; paleobiology of aquatic environments; invasive species. -Biochemical and physiological aspects of aquatic life; synthesis and conversion of organic matter (mechanisms of auto- and heterotrophy, digestion, respiration, nutrition); thermo-, ion, osmo- and volume-regulation; stress and stress resistance; metabolism and energy budgets; non-genetic and genetic adaptation. -Species interactions: Environment–organism and organism–organism interrelationships; predation: defenses (physical and chemical); symbioses. -Molecular biology of aquatic life. -Behavior: Orientation in space and time; migrations; feeding and reproductive behavior; agonistic behavior. -Toxicology and water-quality effects on organisms; anthropogenic impacts on aquatic biota (e.g. pollution, fisheries); stream regulation and restoration. -Theoretical biology: mathematical modelling of biological processes and species interactions. -Methodology and equipment employed in aquatic biological research; underwater exploration and experimentation. -Exploitation of aquatic biota: Fisheries; cultivation of aquatic organisms: use, management, protection and conservation of living aquatic resources. -Reproduction and development in marine, brackish and freshwater organisms
期刊最新文献
Sound properties produced by Korean rockfish Sebastes schlegelii in relation to body and swim bladder size Effects of polysaccharides on turbot Scophthalmus maximus: evaluation with a head kidney macrophage cellular model One year of warming leads to the total loss of productivity in a widespread photosymbiosis Red snapper excavate sediments around artificial reefs: observations of ecosystem-engineering behavior by a widely distributed lutjanid Benthic assemblages in relation to planktonic assemblages in a eutrophic, thermally stratified reservoir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1