一个动态范围为92dB,噪声为0.8μW/ch,具有预测数字自动量程的神经记录ADC阵列

Chul Kim, Siddharth Joshi, Hristos S. Courellis, Jun Wang, Cory T. Miller, G. Cauwenberghs
{"title":"一个动态范围为92dB,噪声为0.8μW/ch,具有预测数字自动量程的神经记录ADC阵列","authors":"Chul Kim, Siddharth Joshi, Hristos S. Courellis, Jun Wang, Cory T. Miller, G. Cauwenberghs","doi":"10.1109/ISSCC.2018.8310388","DOIUrl":null,"url":null,"abstract":"High-density multi-channel neural recording is critical to driving advances in neuroscience and neuroengineering through increasing the spatial resolution and dynamic range of brain-machine interfaces. Neural-signal-acquisition ICs have conventionally been designed composed of two distinct functional blocks per recording channel: a low-noise amplifier front-end (AFE), and an analog-digital converter (ADC) [1,2]. Hybrid architectures utilizing oversampling ADCs with digital feedback [3-5] have seen recent adoption due to their increased power and area efficiency. Still, input dynamic range (DR) is relatively limited due to aggressive supply voltage scaling and/or kT/C sampling noise. This paper presents a neural-recording ADC chip with 92dB input dynamic range and 0.99μVrms of noise at 0.8μW power consumption per channel over 500Hz signal bandwidth, owing to 1) a predictive digital autoranging (PDA) scheme in a hybrid analog-digital 2nd-order oversampling ADC architecture, 2) no specific sampling process through capacitors, avoiding kT/C noise altogether. Digitally predicting the analog input at 12b resolution from a 1b quantization of the continuously integrated residue at effective 32 oversampling ratio (OSR), the PDA handles a ±130mV electrode differential offset (EDO) and recovers from >200mVpp transient artifacts within <1ms. Furthermore, using digital circuits for integration ensures the architecture benefits from process scaling and the resulting compactness makes it suitable for incorporation in high-density recording arrays.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"112 1","pages":"470-472"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A 92dB dynamic range sub-μVrms-noise 0.8μW/ch neural-recording ADC array with predictive digital autoranging\",\"authors\":\"Chul Kim, Siddharth Joshi, Hristos S. Courellis, Jun Wang, Cory T. Miller, G. Cauwenberghs\",\"doi\":\"10.1109/ISSCC.2018.8310388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-density multi-channel neural recording is critical to driving advances in neuroscience and neuroengineering through increasing the spatial resolution and dynamic range of brain-machine interfaces. Neural-signal-acquisition ICs have conventionally been designed composed of two distinct functional blocks per recording channel: a low-noise amplifier front-end (AFE), and an analog-digital converter (ADC) [1,2]. Hybrid architectures utilizing oversampling ADCs with digital feedback [3-5] have seen recent adoption due to their increased power and area efficiency. Still, input dynamic range (DR) is relatively limited due to aggressive supply voltage scaling and/or kT/C sampling noise. This paper presents a neural-recording ADC chip with 92dB input dynamic range and 0.99μVrms of noise at 0.8μW power consumption per channel over 500Hz signal bandwidth, owing to 1) a predictive digital autoranging (PDA) scheme in a hybrid analog-digital 2nd-order oversampling ADC architecture, 2) no specific sampling process through capacitors, avoiding kT/C noise altogether. Digitally predicting the analog input at 12b resolution from a 1b quantization of the continuously integrated residue at effective 32 oversampling ratio (OSR), the PDA handles a ±130mV electrode differential offset (EDO) and recovers from >200mVpp transient artifacts within <1ms. Furthermore, using digital circuits for integration ensures the architecture benefits from process scaling and the resulting compactness makes it suitable for incorporation in high-density recording arrays.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"112 1\",\"pages\":\"470-472\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

高密度多通道神经记录通过提高脑机接口的空间分辨率和动态范围,对推动神经科学和神经工程的进步至关重要。神经信号采集ic通常由每个记录通道的两个不同功能模块组成:低噪声放大器前端(AFE)和模数转换器(ADC)[1,2]。利用带数字反馈的过采样adc的混合架构[3-5]最近被采用,因为它们提高了功率和面积效率。尽管如此,由于电源电压缩放和/或kT/C采样噪声的影响,输入动态范围(DR)相对有限。本文提出了一种神经记录ADC芯片,该芯片的输入动态范围为92dB,信号带宽为500Hz,每通道功耗为0.8μW,噪声为0.99μVrms,其原因在于:1)模数混合二阶过采样ADC架构中的预测数字自量程(PDA)方案;2)没有通过特定的电容采样过程,完全避免了kT/C噪声。通过对有效过采样比(OSR)为32的连续积分残差进行1b量化,以12b分辨率对模拟输入进行数字预测,PDA可以处理±130mV的电极微分偏置(EDO),并在<1ms内从>200mVpp的瞬态伪影中恢复。此外,使用数字电路进行集成确保了架构从过程缩放中受益,并且由此产生的紧凑性使其适合集成在高密度记录阵列中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 92dB dynamic range sub-μVrms-noise 0.8μW/ch neural-recording ADC array with predictive digital autoranging
High-density multi-channel neural recording is critical to driving advances in neuroscience and neuroengineering through increasing the spatial resolution and dynamic range of brain-machine interfaces. Neural-signal-acquisition ICs have conventionally been designed composed of two distinct functional blocks per recording channel: a low-noise amplifier front-end (AFE), and an analog-digital converter (ADC) [1,2]. Hybrid architectures utilizing oversampling ADCs with digital feedback [3-5] have seen recent adoption due to their increased power and area efficiency. Still, input dynamic range (DR) is relatively limited due to aggressive supply voltage scaling and/or kT/C sampling noise. This paper presents a neural-recording ADC chip with 92dB input dynamic range and 0.99μVrms of noise at 0.8μW power consumption per channel over 500Hz signal bandwidth, owing to 1) a predictive digital autoranging (PDA) scheme in a hybrid analog-digital 2nd-order oversampling ADC architecture, 2) no specific sampling process through capacitors, avoiding kT/C noise altogether. Digitally predicting the analog input at 12b resolution from a 1b quantization of the continuously integrated residue at effective 32 oversampling ratio (OSR), the PDA handles a ±130mV electrode differential offset (EDO) and recovers from >200mVpp transient artifacts within <1ms. Furthermore, using digital circuits for integration ensures the architecture benefits from process scaling and the resulting compactness makes it suitable for incorporation in high-density recording arrays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EE1: Student research preview (SRP) A 512Gb 3b/Cell 3D flash memory on a 96-word-line-layer technology Single-chip reduced-wire active catheter system with programmable transmit beamforming and receive time-division multiplexing for intracardiac echocardiography A 2.5nJ duty-cycled bridge-to-digital converter integrated in a 13mm3 pressure-sensing system A 36.3-to-38.2GHz −216dBc/Hz2 40nm CMOS fractional-N FMCW chirp synthesizer PLL with a continuous-time bandpass delta-sigma time-to-digital converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1