基于聚类算法和模糊神经网络的煤矿瓦斯涌出预测

Xiaoyue Liu, Yiwen Liu, Zhenyou Zhang, Lin Zhang
{"title":"基于聚类算法和模糊神经网络的煤矿瓦斯涌出预测","authors":"Xiaoyue Liu, Yiwen Liu, Zhenyou Zhang, Lin Zhang","doi":"10.1109/IFOST.2011.6021183","DOIUrl":null,"url":null,"abstract":"Coal mining gas emission was constrained by many factors. Considering the eight main factors of gas emission, using ant colony clustering and fuzzy C means clustering applied to data pre-processing, determine the membership function of emission. Fuzzy rules extracted from the data sample, establish a fuzzy neural network prediction system of coal mining gas emission.","PeriodicalId":20466,"journal":{"name":"Proceedings of 2011 6th International Forum on Strategic Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of coal mining gas emission based on clustering algorithm and fuzzy neural network\",\"authors\":\"Xiaoyue Liu, Yiwen Liu, Zhenyou Zhang, Lin Zhang\",\"doi\":\"10.1109/IFOST.2011.6021183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coal mining gas emission was constrained by many factors. Considering the eight main factors of gas emission, using ant colony clustering and fuzzy C means clustering applied to data pre-processing, determine the membership function of emission. Fuzzy rules extracted from the data sample, establish a fuzzy neural network prediction system of coal mining gas emission.\",\"PeriodicalId\":20466,\"journal\":{\"name\":\"Proceedings of 2011 6th International Forum on Strategic Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 6th International Forum on Strategic Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFOST.2011.6021183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 6th International Forum on Strategic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFOST.2011.6021183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

煤矿瓦斯排放受多种因素的制约。考虑瓦斯涌出的8个主要因素,采用蚁群聚类和模糊C均值聚类对数据进行预处理,确定瓦斯涌出的隶属度函数。从数据样本中提取模糊规则,建立煤矿瓦斯涌出模糊神经网络预测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of coal mining gas emission based on clustering algorithm and fuzzy neural network
Coal mining gas emission was constrained by many factors. Considering the eight main factors of gas emission, using ant colony clustering and fuzzy C means clustering applied to data pre-processing, determine the membership function of emission. Fuzzy rules extracted from the data sample, establish a fuzzy neural network prediction system of coal mining gas emission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crack-healing behavior of Al2O3/SiC composite Characterization of nanopowders produced by electrical explosion of titanium wires Design of fuzzy logic controller for two-wheeled self-balancing robot The design of the network video terminals based on embedded QT Theoretical calculation and numerical simulation of spherical lung cancer cells' refractive index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1