{"title":"金属量子隧道阻浪材料原理、技术现状及应用前景","authors":"C. Dutcher","doi":"10.1109/ISEMC.1992.626122","DOIUrl":null,"url":null,"abstract":"This paper reports the status of an ongoing research project being carried out on a new class of polymeric surge arresting material devices. They are based on inter-metallic quantum mechanical tunnelling, have demonstrated higher speeds than other types of devices, and have the potential for achieving high energy per volume capacity, while being conformably moldable. The latter can yield a high degree of flexibility in device design allowing the coverage of a wide range of applications. This paper describes their principles of operation, examines the theoretical limit for energy handling in an ideal device, gives status of current material development as well as three potential application examples and their generic considerations.","PeriodicalId":93568,"journal":{"name":"IEEE International Symposium on Electromagnetic Compatibility : [proceedings]. IEEE International Symposium on Electromagnetic Compatibility","volume":"8 1","pages":"384-392"},"PeriodicalIF":0.0000,"publicationDate":"1992-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Metallic Quantum Tunneling Surge arresting Materials Principles, Technology Status, And Potential Applications\",\"authors\":\"C. Dutcher\",\"doi\":\"10.1109/ISEMC.1992.626122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the status of an ongoing research project being carried out on a new class of polymeric surge arresting material devices. They are based on inter-metallic quantum mechanical tunnelling, have demonstrated higher speeds than other types of devices, and have the potential for achieving high energy per volume capacity, while being conformably moldable. The latter can yield a high degree of flexibility in device design allowing the coverage of a wide range of applications. This paper describes their principles of operation, examines the theoretical limit for energy handling in an ideal device, gives status of current material development as well as three potential application examples and their generic considerations.\",\"PeriodicalId\":93568,\"journal\":{\"name\":\"IEEE International Symposium on Electromagnetic Compatibility : [proceedings]. IEEE International Symposium on Electromagnetic Compatibility\",\"volume\":\"8 1\",\"pages\":\"384-392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Electromagnetic Compatibility : [proceedings]. IEEE International Symposium on Electromagnetic Compatibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.1992.626122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Electromagnetic Compatibility : [proceedings]. IEEE International Symposium on Electromagnetic Compatibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.1992.626122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper reports the status of an ongoing research project being carried out on a new class of polymeric surge arresting material devices. They are based on inter-metallic quantum mechanical tunnelling, have demonstrated higher speeds than other types of devices, and have the potential for achieving high energy per volume capacity, while being conformably moldable. The latter can yield a high degree of flexibility in device design allowing the coverage of a wide range of applications. This paper describes their principles of operation, examines the theoretical limit for energy handling in an ideal device, gives status of current material development as well as three potential application examples and their generic considerations.