鉴定共表达基因组中转录因子结合位点的过度代表组合

S. Huang, Debra L. Fulton, David J. Arenillas, P. Perco, S. Sui, J. Mortimer, W. Wasserman
{"title":"鉴定共表达基因组中转录因子结合位点的过度代表组合","authors":"S. Huang, Debra L. Fulton, David J. Arenillas, P. Perco, S. Sui, J. Mortimer, W. Wasserman","doi":"10.1142/9781860947292_0028","DOIUrl":null,"url":null,"abstract":"Transcription regulation is mediated by combinatorial interactions between diverse trans-acting proteins and arrays of cis-regulatory sequences. Revealing this complex interplay between transcription factors and binding sites remains a fundamental problem for understanding the flow of genetic information. The oPOSSUM analysis system facilitates the interpretation of gene expression data through the analysis of transcription factor binding sites shared by sets of co-expressed genes. The system is based on cross-species sequence comparisons for phylogenetic footprinting and motif models for binding site prediction. We introduce a new set of analysis algorithms for the study of the combinatorial properties of transcription factor binding sites shared by sets of co-expressed genes. The new methods circumvent computational challenges through an applied focus on families of transcription factors with similar binding properties. The algorithm accurately identifies combinations of binding sites over-represented in reference collections and clarifies the results obtained by existing methods for the study of isolated binding sites.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"53 1","pages":"247-256"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Identification of Over-Represented Combinations of Transcription Factor Binding Sites in Sets of Co-Expressed Genes\",\"authors\":\"S. Huang, Debra L. Fulton, David J. Arenillas, P. Perco, S. Sui, J. Mortimer, W. Wasserman\",\"doi\":\"10.1142/9781860947292_0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transcription regulation is mediated by combinatorial interactions between diverse trans-acting proteins and arrays of cis-regulatory sequences. Revealing this complex interplay between transcription factors and binding sites remains a fundamental problem for understanding the flow of genetic information. The oPOSSUM analysis system facilitates the interpretation of gene expression data through the analysis of transcription factor binding sites shared by sets of co-expressed genes. The system is based on cross-species sequence comparisons for phylogenetic footprinting and motif models for binding site prediction. We introduce a new set of analysis algorithms for the study of the combinatorial properties of transcription factor binding sites shared by sets of co-expressed genes. The new methods circumvent computational challenges through an applied focus on families of transcription factors with similar binding properties. The algorithm accurately identifies combinations of binding sites over-represented in reference collections and clarifies the results obtained by existing methods for the study of isolated binding sites.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"53 1\",\"pages\":\"247-256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947292_0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

转录调节是由多种反式作用蛋白和顺式调节序列阵列之间的组合相互作用介导的。揭示转录因子和结合位点之间复杂的相互作用仍然是理解遗传信息流的一个基本问题。oPOSSUM分析系统通过分析共表达基因组共享的转录因子结合位点,促进了基因表达数据的解释。该系统是基于跨物种序列比较的系统发育足迹和基序模型的结合位点预测。我们引入了一套新的分析算法来研究转录因子结合位点的组合特性,这些位点是由共表达基因共享的。新方法通过应用于具有相似结合特性的转录因子家族来规避计算挑战。该算法准确地识别了在参考文献集中被过度代表的结合位点组合,并澄清了现有方法获得的孤立结合位点研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Over-Represented Combinations of Transcription Factor Binding Sites in Sets of Co-Expressed Genes
Transcription regulation is mediated by combinatorial interactions between diverse trans-acting proteins and arrays of cis-regulatory sequences. Revealing this complex interplay between transcription factors and binding sites remains a fundamental problem for understanding the flow of genetic information. The oPOSSUM analysis system facilitates the interpretation of gene expression data through the analysis of transcription factor binding sites shared by sets of co-expressed genes. The system is based on cross-species sequence comparisons for phylogenetic footprinting and motif models for binding site prediction. We introduce a new set of analysis algorithms for the study of the combinatorial properties of transcription factor binding sites shared by sets of co-expressed genes. The new methods circumvent computational challenges through an applied focus on families of transcription factors with similar binding properties. The algorithm accurately identifies combinations of binding sites over-represented in reference collections and clarifies the results obtained by existing methods for the study of isolated binding sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1