基于局部相似组合的基因表达数据聚类

De Pan, Fei Wang
{"title":"基于局部相似组合的基因表达数据聚类","authors":"De Pan, Fei Wang","doi":"10.1142/9781860947292_0038","DOIUrl":null,"url":null,"abstract":"Clustering is widely used in gene expression analysis, which helps to group genes with similar biological function together. The traditional clustering techniques are not suitable to be directly applied to gene expression time series data, because of the inhered properties of local regulation and time shift. In order to cope with the existing problems, the local similarity and time shift, we have developed a new similarity measurement technique called Local Similarity Combination in this paper. And at last, we’ll run our method on the real gene expression data and show that it works well.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"45 1","pages":"353-362"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene Expression Data Clustering Based on Local Similarity Combination\",\"authors\":\"De Pan, Fei Wang\",\"doi\":\"10.1142/9781860947292_0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is widely used in gene expression analysis, which helps to group genes with similar biological function together. The traditional clustering techniques are not suitable to be directly applied to gene expression time series data, because of the inhered properties of local regulation and time shift. In order to cope with the existing problems, the local similarity and time shift, we have developed a new similarity measurement technique called Local Similarity Combination in this paper. And at last, we’ll run our method on the real gene expression data and show that it works well.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"45 1\",\"pages\":\"353-362\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947292_0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类分析广泛应用于基因表达分析,它有助于将具有相似生物学功能的基因聚在一起。传统的聚类技术由于其固有的局部调控和时移特性,不适合直接应用于基因表达时间序列数据。为了解决当前存在的局部相似度和时移问题,本文提出了一种新的相似度度量方法——局部相似度组合。最后,我们将在真实的基因表达数据上运行我们的方法,并证明它是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene Expression Data Clustering Based on Local Similarity Combination
Clustering is widely used in gene expression analysis, which helps to group genes with similar biological function together. The traditional clustering techniques are not suitable to be directly applied to gene expression time series data, because of the inhered properties of local regulation and time shift. In order to cope with the existing problems, the local similarity and time shift, we have developed a new similarity measurement technique called Local Similarity Combination in this paper. And at last, we’ll run our method on the real gene expression data and show that it works well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1