曲流带SAGD过程中地质力学效应的影响

I. Malinouskaya, C. Preux, N. Guy, G. Etienne
{"title":"曲流带SAGD过程中地质力学效应的影响","authors":"I. Malinouskaya, C. Preux, N. Guy, G. Etienne","doi":"10.2516/OGST/2018011","DOIUrl":null,"url":null,"abstract":"In the reservoir simulations, the geomechanical effects are usually taken into account to describe the porosity and the permeability variations. In this paper, we present a new method, patented by authors, which allows to model the geomechanical effects also on the well productivity index. The Steam Assisted Gravity Drainage (SAGD) method is widely used for the heavy oil production. A very high variation in pressure and temperature play a significant role on the petrophysical properties and may impact the productivity estimation. In this paper we develop a new simplified geomechanical model in order to account for the thermal and pressure effects on the porosity, permeability and the productivity index during the reservoir simulation. At the current state, these dependencies are defined using semi-analytical relationships. The model is applied to a meandering fluvial reservoir based on 3D outcrop observations. The productivity is found underestimated if the pressure and temperature effects on the petrophysical properties are ignored in the reservoir simulation. Moreover, this study shows an important impact of thermal effects on the productivity estimation. The results of this work show that it is essential to properly take into account the geomechanical effects on the petrophysical properties and also on the productivity index for a better productivity estimation.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":"1 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Impact of geomechanical effects during SAGD process in a meander belt\",\"authors\":\"I. Malinouskaya, C. Preux, N. Guy, G. Etienne\",\"doi\":\"10.2516/OGST/2018011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the reservoir simulations, the geomechanical effects are usually taken into account to describe the porosity and the permeability variations. In this paper, we present a new method, patented by authors, which allows to model the geomechanical effects also on the well productivity index. The Steam Assisted Gravity Drainage (SAGD) method is widely used for the heavy oil production. A very high variation in pressure and temperature play a significant role on the petrophysical properties and may impact the productivity estimation. In this paper we develop a new simplified geomechanical model in order to account for the thermal and pressure effects on the porosity, permeability and the productivity index during the reservoir simulation. At the current state, these dependencies are defined using semi-analytical relationships. The model is applied to a meandering fluvial reservoir based on 3D outcrop observations. The productivity is found underestimated if the pressure and temperature effects on the petrophysical properties are ignored in the reservoir simulation. Moreover, this study shows an important impact of thermal effects on the productivity estimation. The results of this work show that it is essential to properly take into account the geomechanical effects on the petrophysical properties and also on the productivity index for a better productivity estimation.\",\"PeriodicalId\":19444,\"journal\":{\"name\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"volume\":\"1 1\",\"pages\":\"17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2018011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2018011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在储层模拟中,通常考虑地质力学效应来描述孔隙度和渗透率的变化。在本文中,我们提出了一种由作者申请专利的新方法,该方法可以模拟地质力学对油井产能指数的影响。蒸汽辅助重力泄油(SAGD)方法在稠油开采中得到了广泛的应用。压力和温度的巨大变化对岩石物性有重要影响,并可能影响产能估算。为了考虑储层模拟过程中热压对孔隙度、渗透率和产能指标的影响,建立了一种新的简化地质力学模型。在当前状态下,这些依赖关系是使用半分析关系定义的。在三维露头观测的基础上,将该模型应用于某曲流储层。在储层模拟中,如果忽略压力和温度对岩石物性的影响,会发现产能被低估。此外,本研究还显示了热效应对生产力估算的重要影响。这项工作的结果表明,为了更好地估计产能,必须适当考虑地质力学对岩石物理性质和产能指数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of geomechanical effects during SAGD process in a meander belt
In the reservoir simulations, the geomechanical effects are usually taken into account to describe the porosity and the permeability variations. In this paper, we present a new method, patented by authors, which allows to model the geomechanical effects also on the well productivity index. The Steam Assisted Gravity Drainage (SAGD) method is widely used for the heavy oil production. A very high variation in pressure and temperature play a significant role on the petrophysical properties and may impact the productivity estimation. In this paper we develop a new simplified geomechanical model in order to account for the thermal and pressure effects on the porosity, permeability and the productivity index during the reservoir simulation. At the current state, these dependencies are defined using semi-analytical relationships. The model is applied to a meandering fluvial reservoir based on 3D outcrop observations. The productivity is found underestimated if the pressure and temperature effects on the petrophysical properties are ignored in the reservoir simulation. Moreover, this study shows an important impact of thermal effects on the productivity estimation. The results of this work show that it is essential to properly take into account the geomechanical effects on the petrophysical properties and also on the productivity index for a better productivity estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of geomechanical effects during SAGD process in a meander belt Flow Simulation Using Local Grid Refinements to Model Laminated Reservoirs Correlating Stochastically Distributed Reservoir Heterogeneities with Steam-Assisted Gravity Drainage Production Efficient estimation of hydrolyzed polyacrylamide (HPAM) solution viscosity for enhanced oil recovery process by polymer flooding Investigation of Asphaltene Adsorption onto Zeolite Beta Nanoparticles to Reduce Asphaltene Deposition in a Silica Sand Pack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1