{"title":"基于参考故障情况的数据驱动故障隔离方法及其在非线性化工过程中的应用","authors":"E. Ragot, G. Mourot, Maya Kallas","doi":"10.34768/amcs-2022-0044","DOIUrl":null,"url":null,"abstract":"Abstract The diagnosis of systems is one of the major steps in their control and its purpose is to determine the possible presence of dysfunctions, which affect the sensors and actuators associated with a system but also the internal components of the system itself. On the one hand, the diagnosis must therefore focus on the detection of a dysfunction and, on the other hand, on the physical localization of the dysfunction by specifying the component in a faulty situation, and then on its temporal localization. In this contribution, the emphasis is on the use of software redundancy applied to the detection of anomalies within the measurements collected in the system. The systems considered here are characterized by non-linear behaviours whose model is not known apriori. The proposed strategy therefore focuses on processing the data acquired on the system for which it is assumed that a healthy operating regime is known. Diagnostic procedures usually use this data corresponding to good operating regimes by comparing them with new situations that may contain faults. Our approach is fundamentally different in that the good functioning data allow us, by means of a non-linear prediction technique, to generate a lot of data that reflect all the faults under different excitation situations of the system. The database thus created characterizes the dysfunctions and then serves as a reference to be compared with real situations. This comparison, which then makes it possible to recognize the faulty situation, is based on a technique for evaluating the main angle between subspaces of system dysfunction situations. An important point of the discussion concerns the robustness and sensitivity of fault indicators. In particular, it is shown how, by non-linear combinations, it is possible to increase the size of these indicators in such a way as to facilitate the location of faults.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"27 1","pages":"635 - 655"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data Driven Fault Isolation Method Based on Reference Faulty Situations with Application to a Nonlinear Chemical Process\",\"authors\":\"E. Ragot, G. Mourot, Maya Kallas\",\"doi\":\"10.34768/amcs-2022-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The diagnosis of systems is one of the major steps in their control and its purpose is to determine the possible presence of dysfunctions, which affect the sensors and actuators associated with a system but also the internal components of the system itself. On the one hand, the diagnosis must therefore focus on the detection of a dysfunction and, on the other hand, on the physical localization of the dysfunction by specifying the component in a faulty situation, and then on its temporal localization. In this contribution, the emphasis is on the use of software redundancy applied to the detection of anomalies within the measurements collected in the system. The systems considered here are characterized by non-linear behaviours whose model is not known apriori. The proposed strategy therefore focuses on processing the data acquired on the system for which it is assumed that a healthy operating regime is known. Diagnostic procedures usually use this data corresponding to good operating regimes by comparing them with new situations that may contain faults. Our approach is fundamentally different in that the good functioning data allow us, by means of a non-linear prediction technique, to generate a lot of data that reflect all the faults under different excitation situations of the system. The database thus created characterizes the dysfunctions and then serves as a reference to be compared with real situations. This comparison, which then makes it possible to recognize the faulty situation, is based on a technique for evaluating the main angle between subspaces of system dysfunction situations. An important point of the discussion concerns the robustness and sensitivity of fault indicators. In particular, it is shown how, by non-linear combinations, it is possible to increase the size of these indicators in such a way as to facilitate the location of faults.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"27 1\",\"pages\":\"635 - 655\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0044\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0044","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Data Driven Fault Isolation Method Based on Reference Faulty Situations with Application to a Nonlinear Chemical Process
Abstract The diagnosis of systems is one of the major steps in their control and its purpose is to determine the possible presence of dysfunctions, which affect the sensors and actuators associated with a system but also the internal components of the system itself. On the one hand, the diagnosis must therefore focus on the detection of a dysfunction and, on the other hand, on the physical localization of the dysfunction by specifying the component in a faulty situation, and then on its temporal localization. In this contribution, the emphasis is on the use of software redundancy applied to the detection of anomalies within the measurements collected in the system. The systems considered here are characterized by non-linear behaviours whose model is not known apriori. The proposed strategy therefore focuses on processing the data acquired on the system for which it is assumed that a healthy operating regime is known. Diagnostic procedures usually use this data corresponding to good operating regimes by comparing them with new situations that may contain faults. Our approach is fundamentally different in that the good functioning data allow us, by means of a non-linear prediction technique, to generate a lot of data that reflect all the faults under different excitation situations of the system. The database thus created characterizes the dysfunctions and then serves as a reference to be compared with real situations. This comparison, which then makes it possible to recognize the faulty situation, is based on a technique for evaluating the main angle between subspaces of system dysfunction situations. An important point of the discussion concerns the robustness and sensitivity of fault indicators. In particular, it is shown how, by non-linear combinations, it is possible to increase the size of these indicators in such a way as to facilitate the location of faults.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.