基于层递归神经网络的帕金森病语音特征诊断

IF 1.3 4区 医学 Q4 ENGINEERING, BIOMEDICAL Biomedical Engineering / Biomedizinische Technik Pub Date : 2022-06-03 DOI:10.1515/bmt-2022-0022
Z. Senturk
{"title":"基于层递归神经网络的帕金森病语音特征诊断","authors":"Z. Senturk","doi":"10.1515/bmt-2022-0022","DOIUrl":null,"url":null,"abstract":"Abstract Parkinson’s disease (PD), a slow-progressing neurological disease, affects a large percentage of the world’s elderly population, and this population is expected to grow over the next decade. As a result, early detection is crucial for community health and the future of the globe in order to take proper safeguards and have a less arduous treatment procedure. Recent research has begun to focus on the motor system deficits caused by PD. Because practically most of the PD patients suffer from voice abnormalities, researchers working on automated diagnostic systems investigate vocal impairments. In this paper, we undertake extensive experiments with features extracted from voice signals. We propose a layer Recurrent Neural Network (RNN) based diagnosis for PD. To prove the efficiency of the model, different network models are compared. To the best of our knowledge, several neural network topologies, namely RNN, Cascade Forward Neural Networks (CFNN), and Feed Forward Neural Networks (FFNN), are used and compared for voice-based PD detection for the first time. In addition, the impacts of data normalization and feature selection (FS) are thoroughly examined. The findings reveal that normalization increases classifier performance and Laplacian-based FS outperforms. The proposed RNN model with 300 voice features achieves 99.74% accuracy.","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":"12 1","pages":"249 - 266"},"PeriodicalIF":1.3000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Layer recurrent neural network-based diagnosis of Parkinson’s disease using voice features\",\"authors\":\"Z. Senturk\",\"doi\":\"10.1515/bmt-2022-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Parkinson’s disease (PD), a slow-progressing neurological disease, affects a large percentage of the world’s elderly population, and this population is expected to grow over the next decade. As a result, early detection is crucial for community health and the future of the globe in order to take proper safeguards and have a less arduous treatment procedure. Recent research has begun to focus on the motor system deficits caused by PD. Because practically most of the PD patients suffer from voice abnormalities, researchers working on automated diagnostic systems investigate vocal impairments. In this paper, we undertake extensive experiments with features extracted from voice signals. We propose a layer Recurrent Neural Network (RNN) based diagnosis for PD. To prove the efficiency of the model, different network models are compared. To the best of our knowledge, several neural network topologies, namely RNN, Cascade Forward Neural Networks (CFNN), and Feed Forward Neural Networks (FFNN), are used and compared for voice-based PD detection for the first time. In addition, the impacts of data normalization and feature selection (FS) are thoroughly examined. The findings reveal that normalization increases classifier performance and Laplacian-based FS outperforms. The proposed RNN model with 300 voice features achieves 99.74% accuracy.\",\"PeriodicalId\":8900,\"journal\":{\"name\":\"Biomedical Engineering / Biomedizinische Technik\",\"volume\":\"12 1\",\"pages\":\"249 - 266\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering / Biomedizinische Technik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2022-0022\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2022-0022","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

摘要

帕金森病(PD)是一种进展缓慢的神经系统疾病,影响着世界上很大比例的老年人口,预计在未来十年内,这一人口将继续增长。因此,早期发现对社区健康和全球的未来至关重要,以便采取适当的保障措施并减少繁重的治疗程序。最近的研究开始关注帕金森病引起的运动系统缺陷。由于实际上大多数PD患者都患有声音异常,因此从事自动诊断系统的研究人员对声音障碍进行了调查。在本文中,我们对从语音信号中提取的特征进行了大量的实验。提出了一种基于分层递归神经网络(RNN)的PD诊断方法。为了证明该模型的有效性,对不同的网络模型进行了比较。据我们所知,几种神经网络拓扑,即RNN,级联前向神经网络(CFNN)和前馈神经网络(FFNN),首次用于基于语音的PD检测并进行了比较。此外,对数据归一化和特征选择(FS)的影响进行了深入的研究。研究结果表明,归一化提高了分类器的性能,基于拉普拉斯的FS优于分类器。所提出的RNN模型具有300个语音特征,准确率达到99.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Layer recurrent neural network-based diagnosis of Parkinson’s disease using voice features
Abstract Parkinson’s disease (PD), a slow-progressing neurological disease, affects a large percentage of the world’s elderly population, and this population is expected to grow over the next decade. As a result, early detection is crucial for community health and the future of the globe in order to take proper safeguards and have a less arduous treatment procedure. Recent research has begun to focus on the motor system deficits caused by PD. Because practically most of the PD patients suffer from voice abnormalities, researchers working on automated diagnostic systems investigate vocal impairments. In this paper, we undertake extensive experiments with features extracted from voice signals. We propose a layer Recurrent Neural Network (RNN) based diagnosis for PD. To prove the efficiency of the model, different network models are compared. To the best of our knowledge, several neural network topologies, namely RNN, Cascade Forward Neural Networks (CFNN), and Feed Forward Neural Networks (FFNN), are used and compared for voice-based PD detection for the first time. In addition, the impacts of data normalization and feature selection (FS) are thoroughly examined. The findings reveal that normalization increases classifier performance and Laplacian-based FS outperforms. The proposed RNN model with 300 voice features achieves 99.74% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.90%
发文量
58
审稿时长
2-3 weeks
期刊介绍: Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.
期刊最新文献
Evaluation of the RF depositions at 3T in routine clinical scans with respect to the SAR safety to improve efficiency of MRI utilization Comparative evaluation of volumetry estimation from plain and contrast enhanced computed tomography liver images Sparse-view CT reconstruction based on group-based sparse representation using weighted guided image filtering Actuators and transmission mechanisms in rehabilitation lower limb exoskeletons: a review Abstracts of the 2023 Annual Meeting of the Austrian Society for Biomedical Engineering (ÖGBMT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1