具有优异阻燃性能的粉煤灰环氧复合材料

G.K. Mahadeva Raju, C. Srikanth, G. Madhu, Dinesh P. Shankar Reddy, K. Karthik
{"title":"具有优异阻燃性能的粉煤灰环氧复合材料","authors":"G.K. Mahadeva Raju, C. Srikanth, G. Madhu, Dinesh P. Shankar Reddy, K. Karthik","doi":"10.4028/p-hfbu93","DOIUrl":null,"url":null,"abstract":"Epoxy was loaded with varying concentrations of fly ash and was characterized for its structural properties using XRD and SEM. The XRD results revealed reduction of crystallinity with increase in filler content indicating that the composites are semi crystalline in nature. The SEM images showed that at lower concentration of filler content, fly ash is uniformly distributed within the epoxy and at higher concentrations of fly ash, agglomerates were observed. Mechanical properties such as tensile and compressive properties were estimated and the results showed that, the composites exhibit enhanced tensile strength and compressive strength for epoxy with 20 wt% fly ash. Flammable properties such as heat release rate, peak heat release rate, time to ignition, CO and CO2 yields are estimated and reported. Decrease in combustion time, peak heat release rate, time to ignition, CO and CO2 yields with increase in filler content clearly indicates the superior flammability performance of epoxy composites loaded with fly ash.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"150 1","pages":"83 - 94"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fly Ash Epoxy Composites with Superior Fire Retardant Properties\",\"authors\":\"G.K. Mahadeva Raju, C. Srikanth, G. Madhu, Dinesh P. Shankar Reddy, K. Karthik\",\"doi\":\"10.4028/p-hfbu93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epoxy was loaded with varying concentrations of fly ash and was characterized for its structural properties using XRD and SEM. The XRD results revealed reduction of crystallinity with increase in filler content indicating that the composites are semi crystalline in nature. The SEM images showed that at lower concentration of filler content, fly ash is uniformly distributed within the epoxy and at higher concentrations of fly ash, agglomerates were observed. Mechanical properties such as tensile and compressive properties were estimated and the results showed that, the composites exhibit enhanced tensile strength and compressive strength for epoxy with 20 wt% fly ash. Flammable properties such as heat release rate, peak heat release rate, time to ignition, CO and CO2 yields are estimated and reported. Decrease in combustion time, peak heat release rate, time to ignition, CO and CO2 yields with increase in filler content clearly indicates the superior flammability performance of epoxy composites loaded with fly ash.\",\"PeriodicalId\":7271,\"journal\":{\"name\":\"Advanced Materials Research\",\"volume\":\"150 1\",\"pages\":\"83 - 94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-hfbu93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-hfbu93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用不同浓度的粉煤灰对环氧树脂进行负载,并用XRD和SEM对其结构性能进行表征。XRD结果表明,随着填料含量的增加,复合材料的结晶度降低,表明复合材料具有半结晶性质。扫描电镜结果表明,填料含量较低时,粉煤灰在环氧树脂内均匀分布,粉煤灰含量较高时,粉煤灰在环氧树脂内出现团聚现象。对复合材料的拉伸、压缩等力学性能进行了测试,结果表明,当粉煤灰含量为20%时,复合材料的抗拉强度和抗压强度均有所提高。易燃性能,如热释放率,峰值热释放率,点火时间,CO和CO2产率进行估计和报告。随着填料含量的增加,燃烧时间、峰值放热率、着火时间、CO和CO2产率均有所降低,这表明掺加粉煤灰的环氧复合材料具有较好的可燃性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fly Ash Epoxy Composites with Superior Fire Retardant Properties
Epoxy was loaded with varying concentrations of fly ash and was characterized for its structural properties using XRD and SEM. The XRD results revealed reduction of crystallinity with increase in filler content indicating that the composites are semi crystalline in nature. The SEM images showed that at lower concentration of filler content, fly ash is uniformly distributed within the epoxy and at higher concentrations of fly ash, agglomerates were observed. Mechanical properties such as tensile and compressive properties were estimated and the results showed that, the composites exhibit enhanced tensile strength and compressive strength for epoxy with 20 wt% fly ash. Flammable properties such as heat release rate, peak heat release rate, time to ignition, CO and CO2 yields are estimated and reported. Decrease in combustion time, peak heat release rate, time to ignition, CO and CO2 yields with increase in filler content clearly indicates the superior flammability performance of epoxy composites loaded with fly ash.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Molar Ratio and Precipitation Time of Mg/Al Hydrotalcite Synthesis on the Isomerization of Glucose into Fructose Biomaterials and Structural Materials Solid Propellant Aging Detection Method Based on Impedance Spectroscopy Exploring the Potential of α-MnO2/ Carbon Nanotubes for Improved Oxygen Reduction Reaction Performance at the Cathode of Alkaline Fuel Cells Effect of Flame Remelting on the Microstructure, Wear and Corrosion Resistance of HVOF Sprayed NiCrBSi Coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1